Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Reduced satellite cell number in situ in muscular contractures from children with cerebral palsy : REDUCED SATELLITE CELLS IN SITU

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 40

          • Record: found
          • Abstract: found
          • Article: not found

          Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements.

          Myogenic potential, survival and expansion of mammalian muscle progenitors depend on the myogenic determinants Pax3 and Pax7 embryonically, and Pax7 alone perinatally. Several in vitro studies support the critical role of Pax7 in these functions of adult muscle stem cells (satellite cells), but a formal demonstration has been lacking in vivo. Here we show, through the application of inducible Cre/loxP lineage tracing and conditional gene inactivation to the tibialis anterior muscle regeneration paradigm, that, unexpectedly, when Pax7 is inactivated in adult mice, mutant satellite cells are not compromised in muscle regeneration, they can proliferate and reoccupy the sublaminal satellite niche, and they are able to support further regenerative processes. Dual adult inactivation of Pax3 and Pax7 also results in normal muscle regeneration. Multiple time points of gene inactivation reveal that Pax7 is only required up to the juvenile period when progenitor cells make the transition into quiescence. Furthermore, we demonstrate a cell-intrinsic difference between neonatal progenitor and adult satellite cells in their Pax7-dependency. Our finding of an age-dependent change in the genetic requirement for muscle stem cells cautions against inferring adult stem-cell biology from embryonic studies, and has direct implications for the use of stem cells from hosts of different ages in transplantation-based therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length.

            Cerebral palsy (CP) results from an upper motoneuron (UMN)lesion in the developing brain. Secondary to the UMNl esion,which causes spasticity, is a pathological response by muscle - namely, contracture. However, the elements within muscle that increase passive mechanical stiffness, and therefore result in contracture, are unknown. Using hamstring muscle biopsies from pediatric patients with CP (n =33) and control (n =19) patients we investigated passive mechanical properties at the protein, cellular, tissue and architectural levels to identify the elements responsible for contracture. Titin isoform, the major load-bearing protein within muscle cells, was unaltered in CP. Correspondingly, the passive mechanics of individual muscle fibres were not altered. However, CP muscle bundles, which include fibres in their constituent ECM, were stiffer than control bundles. This corresponded to an increase in collagen content of CP muscles measured by hydroxyproline assay and observed using immunohistochemistry. In vivo sarcomere length of CP muscle measured during surgery was significantly longer than that predicted for control muscle. The combination of increased tissue stiffness and increased sarcomere length interact to increase stiffness greatly of the contracture tissue in vivo. These findings provide evidence that contracture formation is not the result of stiffening at the cellular level, but stiffening of the ECM with increased collagen and an increase of in vivo sarcomere length leading to higher passive stresses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The effects of heavy resistance training and detraining on satellite cells in human skeletal muscles.

              The aim of this study was to investigate the modulation of satellite cell content and myonuclear number following 30 and 90 days of resistance training and 3, 10, 30, 60 and 90 days of detraining. Muscle biopsies were obtained from the vastus lateralis of 15 young men (mean age: 24 years; range: 20-32 years). Satellite cells and myonuclei were studied on muscle cross-sections stained with a monoclonal antibody against CD56 and counterstained with Mayer's haematoxylin. Cell cycle markers CyclinD1 and p21 mRNA levels were determined by Northern blotting. Satellite cell content increased by 19% (P= 0.02) at 30 days and by 31% (P= 0.0003) at 90 days of training. Compared to pre-training values, the number of satellite cells remained significantly elevated at 3, 10 and 60 days but not at 90 days of detraining. The two cell cycle markers CyclinD1 and p21 mRNA significantly increased at 30 days of training. At 90 days of training, p21 was still elevated whereas CyclinD1 returned to pre-training values. In the detraining period, p21 and CyclinD1 levels were similar to the pre-training values. There were no significant alterations in the number of myonuclei following the training and the detraining periods. The fibre area controlled by each myonucleus gradually increased throughout the training period and returned to pre-training values during detraining. In conclusion, these results demonstrate the high plasticity of satellite cells in response to training and detraining stimuli and clearly show that moderate changes in the size of skeletal muscle fibres can be achieved without the addition of new myonuclei.
                Bookmark

                Author and article information

                Journal
                Journal of Orthopaedic Research
                J. Orthop. Res.
                Wiley
                07360266
                July 2015
                July 2015
                April 10 2015
                : 33
                : 7
                : 1039-1045
                Affiliations
                [1 ]Department of Orthopaedic Surgery; University of California; San Diego La Jolla California
                [2 ]Department of Veterans Affairs Medical Center; San Diego California
                [3 ]Department of Kinesiology; Faculty of Science; McMaster University; Hamilton ON Canada
                [4 ]Department of Orthopaedics; Rady Children's Hospital; San Diego La Jolla California
                [5 ]Department of Bioengineering; University of California; San Diego California
                Article
                10.1002/jor.22860
                © 2015
                Product
                Self URI (article page): http://doi.wiley.com/10.1002/jor.22860

                Comments

                Comment on this article