20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Seven wood-inhabiting new species of the genus Trichoderma (Fungi, Ascomycota) in Viride clade

      research-article
      1 , 2 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          More than 200 recent collections of Trichoderma from China were examined and 16 species belonging to the Viride clade were identified based on integrated studies of phenotypic and molecular data. Among them, seven wood-inhabiting new species, T. albofulvopsis, T. densum, T. laevisporum, T. sinokoningii, T. sparsum, T. sphaerosporum and T. subviride, are found. They form trichoderma- to verticillium-like conidiophores, lageniform to subulate phialides and globose to ellipsoidal conidia, but vary greatly in colony features, growth rates, and sizes of phialides and conidia. To explore their taxonomic positions, the phylogenetic tree including all the known species of the Viride clade is constructed based on sequence analyses of the combined RNA polymerase II subunit b and translation elongation factor 1 alpha exon genes. Our results indicated that the seven new species were well-located in the Koningii, Rogersonii and Neorufum subclades as well as a few independent terminal branches. They are clearly distinguishable from any existing species. Morphological distinctions and sequence divergences between the new species and their close relatives were discussed.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          TreeView: an application to display phylogenetic trees on personal computers.

          R D Page (1996)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Can three incongruence tests predict when data should be combined?

            Advocates of conditional combination have argued that testing for incongruence between data partitions is an important step in data exploration. Unless the partitions have had distinct histories, as in horizontal gene transfer, incongruence means that one or more data support the wrong phylogeny. This study examines the relationship between incongruence and phylogenetic accuracy using three tests of incongruence. These tests were applied to pairs of mitochondrial DNA data partitions from two well-corroborated vertebrate phylogenies. Of the three tests, the most useful was the incongruence length difference test (ILD, also called the partition homogeneity test). This test distinguished between cases in which combining the data generally improved phylogenetic accuracy (P > 0.01) and cases in which accuracy of the combined data suffered relative to the individual partitions (P < 0.001). In contrast, in several cases, the Templeton and Rodrigo tests detected highly significant incongruence (P < 0.001) even though combining the incongruent partitions actually increased phylogenetic accuracy. All three tests identified cases in which improving the reconstruction model would improve the phylogenetic accuracy of the individual partitions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              European species of Hypocrea Part I. The green-spored species

              At present 75 species of Hypocrea have been identified in temperate Europe. Nineteen green-spored species and their Trichoderma asexual states are here described in detail. Extensive searches for Hypocrea teleomorphs in 14 European countries, with emphasis on Central Europe, yielded more than 620 specimens within five years. The morphology of fresh and dry stromata was studied. In addition, available types of species described from Europe were examined. Cultures were prepared from ascospores and used to study the morphology of cultures and anamorphs, to determine growth rates, and to extract DNA that was used for amplification and sequencing of three genetic markers. ITS was used for identification, while RNA polymerase II subunit b (rpb2) and translation elongation factor 1 alpha (tef1) were analyzed for phylogenetic reconstruction of the genus. Several unexpected findings resulted from this project: 1) The previous view that only a small number of Trichoderma species form a teleomorph is erroneous. 2) All expectations concerning the number of species in Europe are by far exceeded. Seventy-five species of Hypocrea, two species of Protocrea, and Arachnocrea stipata, are herein identified in temperate Europe, based on the ITS identification routine using fresh material, on species described earlier without molecular data and on species recently described but not collected during this project. 3) Current data suggest that the biodiversity of Hypocrea / Trichoderma above soil exceeds the number of species isolated from soil. 4) The number of Trichoderma species forming hyaline conidia has been considered a small fraction. In Europe, 26 species of those forming teleomorphs produce hyaline conidia, while 42 green-conidial species are known. Three of the detected Hypocrea species do not form an anamorph in culture, while the anamorph is unknown in four species, because they have never been cultured. This work is a preliminary account of Hypocrea and their Trichoderma anamorphs in Europe. Of the hyaline-spored species, H. minutispora is by far the most common species in Europe, while of the green-spored species this is H. strictipilosa. General ecology of Hypocrea is discussed. Specific associations, either with host fungi or trees have been found, but the majority of species seems to be necrotrophic on diverse fungi on wood and bark. The taxonomy of the genus will be treated in two parts. In this first part 19 species of Hypocrea with green ascospores, including six new teleomorph and five new anamorph species, are described in detail. All green-spored species belong to previously recognised clades, except H. spinulosa, which forms the new Spinulosa Clade with two additional new species, and H. fomiticola, which belongs to the Semiorbis Clade and forms effuse to large subpulvinate stromata on Fomes fomentarius, a trait new for species with green ascospores. Anamorph names are established prospectively in order to provide a basis for possible policy alterations towards their use for holomorphs.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                01 June 2016
                2016
                : 6
                : 27074
                Affiliations
                [1 ]State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences , Beijing 100101, P.R. China
                [2 ]University of Chinese Academy of Sciences , Beijing 100049, P.R. China
                Author notes
                Article
                srep27074
                10.1038/srep27074
                4888246
                27245694
                43b2fda0-4f8d-4e0e-aca7-a943ef21f54e
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 03 February 2016
                : 09 May 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article