23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dendritic Signaling in Inhibitory Interneurons: Local Tuning via Group I Metabotropic Glutamate Receptors

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Communication between neurons is achieved by rapid signal transduction via highly specialized structural elements known as synaptic contacts. In addition, numerous extrasynaptic mechanisms provide a flexible platform for the local regulation of synaptic signals. For example, peri- and extra-synaptic signaling through the group I metabotropic glutamate receptors (mGluRs) can be involved in the highly compartmentalized regulation of dendritic ion conductances, the induction of input-specific synaptic plasticity, and the local release of retrograde messengers. Therefore, extrasynaptic mechanisms appear to play a key role in the local tuning of dendritic computations. Here, we review recent findings on the role of group I mGluRs in the dendritic signaling of inhibitory interneurons. We propose that group I mGluRs provide a dual-mode signaling device that integrates different patterns of neural activity. By implementing distinct forms of intrinsic and synaptic regulation, group I mGluRs may be responsible for the local fine-tuning of dendritic function.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

          Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An introduction to TRP channels.

            The aim of this review is to provide a basic framework for understanding the function of mammalian transient receptor potential (TRP) channels, particularly as they have been elucidated in heterologous expression systems. Mammalian TRP channel proteins form six-transmembrane (6-TM) cation-permeable channels that may be grouped into six subfamilies on the basis of amino acid sequence homology (TRPC, TRPV, TRPM, TRPA, TRPP, and TRPML). Selected functional properties of TRP channels from each subfamily are summarized in this review. Although a single defining characteristic of TRP channel function has not yet emerged, TRP channels may be generally described as calcium-permeable cation channels with polymodal activation properties. By integrating multiple concomitant stimuli and coupling their activity to downstream cellular signal amplification via calcium permeation and membrane depolarization, TRP channels appear well adapted to function in cellular sensation. Our review of recent literature implicating TRP channels in neuronal growth cone steering suggests that TRPs may function more widely in cellular guidance and chemotaxis. The TRP channel gene family and its nomenclature, the encoded proteins and alternatively spliced variants, and the rapidly expanding pharmacology of TRP channels are summarized in online supplemental material.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Homer: a protein that selectively binds metabotropic glutamate receptors.

              Spatial localization and clustering of membrane proteins is critical to neuronal development and synaptic plasticity. Recent studies have identified a family of proteins, the PDZ proteins, that contain modular PDZ domains and interact with synaptic ionotropic glutamate receptors and ion channels. PDZ proteins are thought to have a role in defining the cellular distribution of the proteins that interact with them. Here we report a novel dendritic protein, Homer, that contains a single, PDZ-like domain and binds specifically to the carboxy terminus of phosphoinositide-linked metabotropic glutamate receptors. Homer is highly divergent from known PDZ proteins and seems to represent a novel family. The Homer gene is also distinct from members of the PDZ family in that its expression is regulated as an immediate early gene and is dynamically responsive to physiological synaptic activity, particularly during cortical development. This dynamic transcriptional control suggests that Homer mediates a novel cellular mechanism that regulates metabotropic glutamate signalling.
                Bookmark

                Author and article information

                Journal
                Front Physiol
                Front Physiol
                Front. Physio.
                Frontiers in Physiology
                Frontiers Research Foundation
                1664-042X
                09 July 2012
                2012
                : 3
                : 259
                Affiliations
                [1] 1simpleDepartment of Biochemistry, Microbiology and Bioinformatics, Axis of Cellular and Molecular Neuroscience, CRIUSMQ, Université Laval Québec, PQ, Canada
                [2] 2simpleDépartement de Physiologie and Groupe de Recherche sur le Système Nerveux Central, Université de Montréal Montréal, PQ, Canada
                Author notes

                Edited by: Francisco Fernandez De-Miguel, Universidad Nacional Autonoma de Mexico, Mexico

                Reviewed by: Harald Janovjak, Institute of Science and Technology Austria, Austria; Enrique Hernandez-Lemus, National Institute of Genomic Medicine, Mexico

                *Correspondence: Lisa Topolnik, Department of Biochemistry, Microbiology and Bioinformatics, Axis of Cellular and Molecular Neuroscience, CRIUSMQ, Université Laval, 2601 Ch. De La Canardière, CRULRG, Québec, PQ, Canada G1J 2G3. e-mail: lisa.topolnik@ 123456crulrg.ulaval.ca

                This article was submitted to Frontiers in Membrane Physiology and Biophysics, a specialty of Frontiers in Physiology.

                Article
                10.3389/fphys.2012.00259
                3429035
                22934015
                43b30ab2-4da2-4310-85ed-8659eb849f2f
                Copyright © 2012 Camiré, Lacaille and Topolnik.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 01 April 2012
                : 21 June 2012
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 83, Pages: 8, Words: 6733
                Categories
                Physiology
                Mini Review

                Anatomy & Physiology
                ion channel,plasticity,dendrite,metabotropic glutamate receptor,gabaergic interneuron,synapse

                Comments

                Comment on this article