16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Green Renal Replacement Therapy: Caring for the Environment

      Submit here before July 31, 2024

      About Blood Purification: 3.0 Impact Factor I 5.6 CiteScore I 0.83 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Localization of Discoidin Domain Receptors in Rat Kidney

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aim: The discoidin domain receptors (DDRs) DDR1 and DDR2 are cardinal members of a receptor tyrosine kinase subfamily, activated by collagens. They are candidate effectors in tissue injury and fibrosis. We investigated the DDR expression in normal and remnant rat kidneys. Methods: The DDR expression in kidney and other tissues was examined by indirect immunofluorescence, immunoblotting, and ribonuclease protection assays. The expression patterns in remnant and control kidneys were compared at 2-, 4-, and 8-week time points, following induction of injury. Results: DDR1 is expressed in basolateral membranes of select nephron segments, from the connecting tubule to the renal papilla. DDR2 is expressed in apical membranes of select nephron segments, from the loop of Henle to the macula densa. The DDR1 protein expression is upregulated within the glomeruli of remnant kidneys. The distribution of DDR2 in remnant kidneys is similar to that in controls. The DDR mRNA levels in remnant and control kidneys were not significantly different, at any time point. Conclusions: The DDR1 localization in the rat kidney is consistent with roles in cell-matrix interactions. Upregulation within glomeruli of remnant kidneys suggests the possibility of additional roles in kidney injury. The DDR2 localization in adult rat kidneys is inconsistent with roles in cell-matrix interactions.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development.

          Various types of collagen have been identified as potential ligands for the two mammalian discoidin domain receptor tyrosine kinases, DDR1 and DDR2. Here, we used a recombinant fusion protein between the extracellular domain of DDR1 and alkaline phosphatase to detect specific receptor binding sites during mouse development. Major sites of DDR1-binding activity, indicative of ligand expression, were found in skeletal bones, the skin, and the urogenital tract. Ligand expression in the uterus during implantation and in the mammary gland during pregnancy colocalized with the expression of the DDR1 receptor. The generation of DDR1-null mice by gene targeting yielded homozygous mutant animals that were viable but smaller in size than control littermates. The majority of mutant females were unable to bear offspring due to a lack of proper blastocyst implantation into the uterine wall. When implantation did occur, the mutant females were unable to lactate. Histological analysis showed that the alveolar epithelium failed to secrete milk proteins into the lumen of the mammary gland. The lactational defect appears to be caused by hyperproliferation and abnormal branching of mammary ducts. These results suggest that DDR1 is a key mediator of the stromal-epithelial interaction during ductal morphogenesis in the mammary gland.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Discoidin domain receptor (DDR) 1 and 2: collagen-activated tyrosine kinase receptors in the cornea.

            Discoidin domain receptor (DDR) 1 and 2 have recently been found to serve as receptors for several collagen types. These receptors have been found to modulate cell proliferation and metalloprotease expression in response to collagen stimulation. The purpose of this study was to examine expression of DDR1 and DDR2 in the cornea and to determine the effect of several collagen types on proliferation and response to pro-apoptotic cytokines by corneal fibroblasts. DDR1 and DDR2 mRNAs were detected by RT-PCR. Proteins were detected by immunocytochemistry and immunoprecipitation with Western blotting. Cell proliferation in response to acetic acid-solubilized collagen type I, II, IV, IX or X was determined by cell counting. The effect of these collagen types on Fas-stimulating antibody-induced cell death was determined by trypan blue assay. DDR1 and DDR2 mRNAs were detected in each major human cell type of the cornea. Both were also detected in ex vivo human corneal epithelium. DDR1 and DDR2 proteins were detected in all three major cell types in culture and in human corneal tissue. Collagen types I, II, IV, IX and X stimulated proliferation, but had no effect on Fas-mediated apoptosis, of corneal fibroblasts. DDR1 and DDR2 tyrosine kinase receptors are expressed in the cornea. Collagen-stimulated mitosis of corneal fibroblasts in culture is likely mediated by the DDR receptors. Collagen had no effect on Fas-mediated apoptosis of corneal fibroblasts. Copyright 2001 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discoidin domain receptor 1 functions in axon extension of cerebellar granule neurons.

              In the developing cerebellum, granule neuron axon outgrowth is a key step toward establishing proper connections with Purkinje neurons, the principal output neuron of the cerebellum. During a search for genes that function in this process, we identified a receptor tyrosine kinase discoidin domain receptor 1 (DDR1) expressed in granule cells throughout their development. Overexpression of a dominant-negative form of DDR1 in immature granule cells results in severe reduction of neurite outgrowth in vitro, in dissociated primary culture, and in vivo, in organotypic slices of neonatal cerebellum. Granule cells that fail to extend axons are positive for differentiation markers such as TAG-1 and the neuron-specific class III beta-tubulin, suggesting that development is affected after granule cells commit to terminal differentiation. DDR1 activation appears to be mediated by its ligand, collagen, which is localized to the pial layer of the developing cerebellum, thereby leading to granule cell parallel fiber extension. Our results therefore indicate that collagen-DDR1 signaling is essential for granule neuron axon formation and further suggest a unique role of pia in cerebellar cortex histogenesis.
                Bookmark

                Author and article information

                Journal
                NEE
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2004
                June 2004
                17 November 2004
                : 97
                : 2
                : e62-e70
                Affiliations
                Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis,Minn., USA
                Article
                78407 Nephron Exp Nephrol 2004;97:e62–e70
                10.1159/000078407
                15218324
                43b3f6f6-d90f-4c4f-908c-a73e621c13ca
                © 2004 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 13 August 2003
                : 10 December 2003
                Page count
                Figures: 6, References: 27, Pages: 1
                Categories
                Original Paper

                Cardiovascular Medicine,Nephrology
                Receptor tyrosine kinase subfamily,Collagen,Discoidin receptors,Disease models, animals,Kidney pathology

                Comments

                Comment on this article