10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Group 2 innate lymphoid cells (ILC2 cells) are important for type 2 immune responses and are activated by the epithelial cytokines interleukin 33 (IL-33), IL-25 and thymic stromal lymphopoietin (TSLP). Here we demonstrated that IL-1β was a critical activator of ILC2 cells, inducing proliferation and cytokine production and regulating the expression of epithelial cytokine receptors. IL-1β also governed ILC2 plasticity by inducing low expression of the transcription factor T-bet and the cytokine receptor chain IL-12Rβ2, which enabled the conversion of these cells into an ILC1 phenotype in response to IL-12. This transition was marked by an atypical chromatin landscape characterized by the simultaneous transcriptional accessibility of the locus encoding interferon-γ (IFN-γ) and the loci encoding IL-5 and IL-13. Finally, IL-1β potentiated ILC2 activation and plasticity in vivo, and IL-12 acted as the switch that determined an ILC2-versus-ILC1 response. Thus, we have identified a previously unknown role for IL-1β in facilitating ILC2 maturation and plasticity.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The IL-1 family: regulators of immunity.

          Over recent years it has become increasingly clear that innate immune responses can shape the adaptive immune response. Among the most potent molecules of the innate immune system are the interleukin-1 (IL-1) family members. These evolutionarily ancient cytokines are made by and act on innate immune cells to influence their survival and function. In addition, they act directly on lymphocytes to reinforce certain adaptive immune responses. This Review provides an overview of both the long-established and more recently characterized members of the IL-1 family. In addition to their effects on immune cells, their involvement in human disease and disease models is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Type 2 innate lymphoid cells control eosinophil homeostasis

            Eosinophils are specialized myeloid cells associated with allergy and helminth infections. Blood eosinophils demonstrate circadian cycling, as described over 80 years ago, 1 and are abundant in the healthy gastrointestinal tract. Although a cytokine, interleukin (IL)-5, and chemokines such as eotaxins, mediate eosinophil development and survival, 2 and tissue recruitment, 3 respectively, the processes underlying the basal regulation of these signals remain unknown. Here, we show that serum IL-5 is maintained by long-lived type 2 innate lymphoid cells (ILC2) resident in peripheral tissues. ILC2 secrete IL-5 constitutively and are induced to co-express IL-13 during type 2 inflammation, resulting in localized eotaxin production and eosinophil accumulation. In the small intestine where eosinophils and eotaxin are constitutive, 4 ILC2 co-express IL-5 and IL-13, which is enhanced after caloric intake. The circadian synchronizer vasoactive intestinal peptide (VIP) also stimulates ILC2 through the VPAC2 receptor to release IL-5, linking eosinophil levels with metabolic cycling. Tissue ILC2 regulate basal eosinophilopoiesis and tissue eosinophil accumulation through constitutive and stimulated cytokine expression, and this dissociated regulation can be tuned by nutrient intake and central circadian rhythms.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161.

              Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.
                Bookmark

                Author and article information

                Journal
                Nat. Immunol.
                Nature immunology
                1529-2916
                1529-2908
                Jun 2016
                : 17
                : 6
                Affiliations
                [1 ] Baylor Research Institute, Baylor Scott and White Health, Dallas, Texas, USA.
                [2 ] R&D Research, MedImmune, Gaithersburg, Maryland, USA.
                [3 ] Department of Respiratory, Inflammation and Autoimmunity, MedImmune, Gaithersburg, Maryland, USA.
                Article
                ni.3447
                10.1038/ni.3447
                27111142
                43c2c153-7cf6-444b-bd85-6ad4e92d6773
                History

                Comments

                Comment on this article