4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice

      research-article
      1 , 2 , 2 , 1 , 3 ,
      Molecular Autism
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by three core symptoms that include social interaction deficits, cognitive inflexibility, and communication disorders. They have been steadily increasing in children over the past several years, with no effective treatment. BTBR T+tf/J (BTBR) mice are an accepted model of evaluating autistic-like behaviors as they present all core symptoms of ASD. We have previously shown that transplantation of human bone marrow mesenchymal stem cells (MSC) to the lateral ventricles of BTBR mice results in long lasting improvement in their autistic behavioral phenotypes. Recent studies point exosomes as the main mediators of the therapeutic effect of MSC. Here, we tested whether treatment with the exosomes secreted from MSC (MSC-exo) will show similar beneficial effects. We found that intranasal administration of MSC-exo increased male to male social interaction and reduced repetitive behaviors. Moreover, the treatment led to increases of male to female ultrasonic vocalizations and significant improvement in maternal behaviors of pup retrieval. No negative symptoms were detected following MSC-exo intranasal treatments in BTBR or healthy C57BL mice. The marked beneficial effects of the exosomes in BTBR mice may translate to a novel, non-invasive, and therapeutic strategy to reduce the symptoms of ASD.

          Electronic supplementary material

          The online version of this article (10.1186/s13229-018-0240-6) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth.

          Multipotent mesenchymal stromal cells (MSCs) have potential therapeutic benefit for the treatment of neurological diseases and injury. MSCs interact with and alter brain parenchymal cells by direct cell-cell communication and/or by indirect secretion of factors and thereby promote functional recovery. In this study, we found that MSC treatment of rats subjected to middle cerebral artery occlusion (MCAo) significantly increased microRNA 133b (miR-133b) level in the ipsilateral hemisphere. In vitro, miR-133b levels in MSCs and in their exosomes increased after MSCs were exposed to ipsilateral ischemic tissue extracts from rats subjected to MCAo. miR-133b levels were also increased in primary cultured neurons and astrocytes treated with the exosome-enriched fractions released from these MSCs. Knockdown of miR-133b in MSCs confirmed that the increased miR-133b level in astrocytes is attributed to their transfer from MSCs. Further verification of this exosome-mediated intercellular communication was performed using a cel-miR-67 luciferase reporter system and an MSC-astrocyte coculture model. Cel-miR-67 in MSCs was transferred to astrocytes via exosomes between 50 and 100 nm in diameter. Our data suggest that the cel-miR-67 released from MSCs was primarily contained in exosomes. A gap junction intercellular communication inhibitor arrested the exosomal microRNA communication by inhibiting exosome release. Cultured neurons treated with exosome-enriched fractions from MSCs exposed to 72 hours post-MCAo brain extracts significantly increased the neurite branch number and total neurite length. This study provides the first demonstration that MSCs communicate with brain parenchymal cells and may regulate neurite outgrowth by transfer of miR-133b to neural cells via exosomes. Copyright © 2012 AlphaMed Press.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Role of microRNAs in vascular diseases, inflammation, and angiogenesis.

            The integrity of the endothelial monolayer is fundamental for the homoeostasis of the vascular system. Functional endothelial cells are also required for the growth of new blood vessels during neovascularization. Although multiple growth factors have been shown to regulate angiogenesis and vascular development, little is known about the complex upstream regulation of gene expression and translation. MicroRNAs (miRNAs) are an emerging class of highly conserved, non-coding small RNAs that regulate gene expression on the post-transcriptional level by inhibiting the translation of protein from mRNA or by promoting the degradation of mRNA. More than 500 human miRNAs have been identified so far, and increasing evidence indicates that miRNAs have distinct expression profiles and play crucial roles in various physiological and pathological processes such as cardiogenesis, haematopoietic lineage differentiation, and oncogenesis. Meanwhile, a few specific miRNAs that regulate endothelial cell functions and angiogenesis have been described. Let7-f, miR-27b, and mir-130a were identified as pro-angiogenic miRNAs. In contrast, miR-221 and miR-222 inhibit endothelial cell migration, proliferation, and angiogenesis in vitro by targeting the stem cell factor receptor c-kit and indirectly regulating endothelial nitric oxide synthase expression. Moreover, some miRNAs are involved in tumour angiogenesis such as the miR-17-92 cluster and miR-378. Early studies also indicate the contribution of specific miRNAs (e.g. miR-155, miR-21, and miR-126) to vascular inflammation and diseases. Thus, the identification of miRNAs and their respective targets may offer new therapeutic strategies to treat vascular diseases such as atherosclerosis, to improve neovascularization after ischaemia, or to prevent tumour progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              In Vivo Neuroimaging of Exosomes Using Gold Nanoparticles.

              Exosomes are emerging as effective therapeutic tools for various pathologies. These extracellular vesicles can bypass biological barriers, including the blood-brain barrier, and can serve as powerful drug and gene therapy transporters. However, the progress of therapy development is impeded by several challenges, including insufficient data on exosome trafficking and biodistribution and the difficulty to image deep brain structures in vivo. Herein, we established a method for noninvasive in vivo neuroimaging and tracking of exosomes, based on glucose-coated gold nanoparticle (GNP) labeling and computed tomography imaging. Labeling of exosomes with the GNPs was achieved directly, as opposed to the typical and less efficient indirect labeling mode through parent cells. On the mechanistic level, we found that the glucose-coated GNPs were uptaken into MSC-derived exosomes via an active, energy-dependent mechanism that is mediated by the glucose transporter GLUT-1 and involves endocytic proteins. Next, we determined optimal parameters of size and administration route; we demonstrated that 5 nm GNPs enabled improved exosome labeling and that intranasal, compared to intravenous, administration led to superior brain accumulation and thus enhanced in vivo neuroimaging. Furthermore, using a mouse model of focal brain ischemia, we noninvasively tracked intranasally administered GNP-labeled exosomes, which showed increased accumulation at the lesion site over 24 h, as compared to nonspecific migration and clearance from control brains over the same period. Thus, this exosome labeling technique can serve as a powerful diagnostic tool for various brain disorders and could potentially enhance exosome-based treatments for neuronal recovery.
                Bookmark

                Author and article information

                Contributors
                danioffen@gmail.com
                Journal
                Mol Autism
                Mol Autism
                Molecular Autism
                BioMed Central (London )
                2040-2392
                21 November 2018
                21 November 2018
                2018
                : 9
                : 57
                Affiliations
                [1 ]ISNI 0000 0004 1937 0546, GRID grid.12136.37, Sagol School of Neuroscience, , Tel Aviv University, ; Tel Aviv, Israel
                [2 ]ISNI 0000 0004 1937 0538, GRID grid.9619.7, Edmond and Lily Safra Center for Brain Sciences, , Hebrew University, ; Jerusalem, Israel
                [3 ]ISNI 0000 0004 1937 0546, GRID grid.12136.37, Sacklar School of Medicine, Department of Human Genetics and Biochemistry, , Tel Aviv University, ; Tel Aviv, Israel
                Article
                240
                10.1186/s13229-018-0240-6
                6249852
                30479733
                43d09606-ddd3-44ab-9577-5f76676e7ab2
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 July 2018
                : 15 October 2018
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Neurosciences
                Neurosciences

                Comments

                Comment on this article