5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fusion of cell-penetrating peptides to thermally responsive biopolymer improves tumor accumulation of p21 peptide in a mouse model of pancreatic cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Current therapies for the treatment of pancreatic cancer are limited. The limitations of this type of treatment are abundant. The majority of chemotherapeutic agents used in clinics are highly toxic to both tumor cells and normal tissues due to the lack of specificity. Resistance can develop due to overexposure of these agents. To address these issues, these agents must be made more exclusive toward the tumor site. We have developed a macromolecular carrier based on the sequence of the biopolymer elastin-like polypeptide (ELP) that is able to aggregate upon reaching the externally heated tumor environment. This carrier is specific to the tumor as it only aggregates at the heated tumor site. ELP is soluble below its transition temperature but will aggregate when the temperature is raised above its transition temperature. ELP was modified by p21, a cell cycle inhibitory peptide, and the addition of Bac, a cell-penetrating peptide with nuclear localization capabilities. In this study, p21-ELP-Bac and its control, ELP-p21, were used in cell proliferation studies using the pancreatic cancer cell lines Panc-1, MiaPaca-2, and S2013. ELP-p21 had little effect on proliferation, while the half maximal inhibitory concentration of p21-ELP-Bac was ∼30 μM. As translocation across the plasma membrane is a limiting step for delivery of macromolecules, these polypeptides were utilized in a pancreatic xenograft model to study the plasma clearance, biodistribution, tumor accumulation, and tumor reduction capabilities of the polypeptide with and without a cell-penetrating peptide.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects.

           Hiroshi Maeda (2010)
          This paper briefly documents the history of the discovery of the EPR (enhanced permeability and retention) effect and elucidates an analogy between bacterial infection involving proteases that trigger kinin generation and cancer. The EPR effect of macromolecules in cancer tissues is defined, and the distinction between the EPR effect (with reference to clearance of macromolecules from the interstitial space of tumor tissues) and the simple passive targeting of drugs to tumors is described. Additional points of discussion include the uniqueness of tumor vessels, the influence of kinin and other vascular mediators such as nitric oxide (NO) and prostaglandins, and the heterogeneity of the EPR effect. Two different strategies to augment the EPR effect that were discovered are elevating blood pressure artificially via slow infusion of angiotensin II and applying nitroglycerin or other NO donors. Use of the nitroagent increased not only the blood flow of the tumor, but also the delivery of drug to the tumor and the drug's therapeutic effect. This finding shows an intriguing analogy to hypoxic cardiac infarct tissue, in that both are improved by NO. These two methods were applied to treatment of rodents and human cancers, in combination with other anticancer agents, with successful results achieved in rodents as well as humans. These data suggest very appealing prospects for utilization of the EPR effect in future development of cancer therapeutics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Purification of recombinant proteins by fusion with thermally-responsive polypeptides.

            Elastin-like polypeptides (ELPs) undergo a reversible, inverse phase transition. Below their transition temperature (Tt), ELPs are soluble in water, but when the temperature is raised above Tt, phase transition occurs, leading to aggregation of the polypeptide. We demonstrate a method for purification of soluble fusion proteins incorporating an ELP tag. Advantages of this method, termed "inverse transition cycling," include technical simplicity, low cost, ease of scale-up, and capacity for multiplexing. More broadly, the ability to environmentally modulate the physicochemical properties of recombinant proteins by fusion with ELPs will allow diverse applications in bioseparation, immunoassays, biocatalysis, and drug delivery.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers.

              Delivery of anticancer therapeutic agents to solid tumors is problematic. Macromolecular drug carriers are an attractive alternative drug delivery method because they appear to target tumors and have limited toxicity in normal tissues. We investigated how molecular weight influences the accumulation of a model macromolecular drug carrier, dextran covalently linked to a fluorophore, in tumors. We used dextrans with molecular weights from 3.3 kDa to 2 MDa. Vascular permeability, accumulation, and three-dimensional penetration of these dextrans were simultaneously measured in solid tumors via a dorsal skin fold window chamber, intravital laser-scanning confocal microscopy, and custom image analysis. Increasing the molecular weight of dextran statistically significantly reduced its vascular permeability by approximately two orders of magnitude (i.e., from 154 x 10(-7) cm/s, 95% confidence interval [CI] = 134 to 174 x 10(-7) cm/s, for 3.3-kDa dextran to 1.7 x 10(-7) cm/s, 95% CI = 0.7 to 2.6 x 10(-7) cm/s for 2-MDa dextran; P < .001, two-sided Kruskal-Wallis test) but increased its plasma half-life, which provided ample time for extravasation (i.e., to enter tumor tissue from the vasculature). Tumor accumulation was maximal for dextrans with molecular weights between 40 and 70 kDa. Dextrans of 3.3 and 10 kDa penetrated deeply (greater than 35 microm) and homogeneously into tumor tissue from the vessel wall. After a 30-minute period, a high concentration was observed only approximately 15 microm from the vessel wall for 40- to 70-kDa dextrans and only 5 microm for 2-MDa dextrans. Increasing the molecular weight of dextran statistically significantly reduced its tumor vascular permeability. Dextrans of 40 and 70 kDa had the highest accumulation in solid tumors but were largely concentrated near the vascular surface.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2014
                07 October 2014
                : 8
                : 1649-1658
                Affiliations
                [1 ]Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS, USA
                [2 ]Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
                [3 ]Division of Hematology and Oncology, University of Louisville, Louisville, KY, USA
                Author notes
                Correspondence: Drazen Raucher, 2500 N State St, Jackson, MS, USA 39216, Tel +1 601 984 1510, Fax +1 601 984 1501, Email draucher@ 123456umc.edu
                Article
                dddt-8-1649
                10.2147/DDDT.S60451
                4199967
                © 2014 Walker et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Comments

                Comment on this article