4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genetic differentiation among populations of a Hispaniolan trunk anole that exhibit geographical variation in dewlap colour.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Long neglected by classic island biogeographical theory, speciation within and among islands is increasingly recognized as a major contributor to insular diversity. Although the factors responsible for island speciation remain poorly understood, this process appears critically dependent on geographical variation and speciation in allopatry or parapatry. Here, we investigate geographical variation and speciation in a complex of Hispaniolan trunk anoles (Anolis distichus), where populations with strikingly distinct dewlap colours and patterns correspond with deeply divergent mtDNA structure. Using a multilocus, population-level analysis, we investigate whether these phenotypically and mitochondrially distinct populations exhibit the type of nuclear differentiation expected among species or incipient species. Along a transect that extends across a recently recessed marine barrier, our results are consistent with the persistence of an abrupt phenotypic and mitochondrial transition following secondary contact, in spite of little or no evidence for a reduction in nuclear gene flow. Along a second transect extending across a steep environmental gradient, our phenotypic and microsatellite data suggest a sharp genetic break with little or no admixture, whereas mtDNA recovers a signature of extensive unidirectional introgression. Together, these results are consistent with previous studies of Lesser Antillean anoles, suggesting that allopatric divergence alone is insufficient for speciation, whereas reduced gene flow and partial reproductive isolation may accumulate in the presence of ecological gradients.

          Related collections

          Author and article information

          Journal
          Mol. Ecol.
          Molecular ecology
          Wiley-Blackwell
          1365-294X
          0962-1083
          Oct 2011
          : 20
          : 20
          Affiliations
          [1 ] Department of Biology, University of Rochester, RC Box 270211, Rochester, NY 14627-0211, USA. julienne.ng@rochester.edu
          Article
          10.1111/j.1365-294X.2011.05267.x
          21951523

          Comments

          Comment on this article