2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic and Phylogenetic Analysis of Lactiplantibacillus plantarum L125, and Evaluation of Its Anti-Proliferative and Cytotoxic Activity in Cancer Cells

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactiplantibacillus plantarum is a diverse species that includes nomadic strains isolated from a variety of environmental niches. Several L. plantarum strains are being incorporated in fermented foodstuffs as starter cultures, while some of them have also been characterized as probiotics. In this study, we present the draft genome sequence of L. plantarum L125, a potential probiotic strain presenting biotechnological interest, originally isolated from a traditional fermented meat product. Phylogenetic and comparative genomic analysis with other potential probiotic L. plantarum strains were performed to determine its evolutionary relationships. Furthermore, we located genes involved in the probiotic phenotype by whole genome annotation. Indeed, genes coding for proteins mediating host–microbe interactions and bile salt, heat and cold stress tolerance were identified. Concerning the potential health-promoting attributes of the novel strain, we determined that L. plantarum L125 carries an incomplete plantaricin gene cluster, in agreement with previous in vitro findings, where no bacteriocin-like activity was detected. Moreover, we showed that cell-free culture supernatant (CFCS) of L. plantarum L125 exerts anti-proliferative, anti-clonogenic and anti-migration activity against the human colon adenocarcinoma cell line, HT-29. Conclusively, L. plantarum L125 presents desirable probiotic traits. Future studies will elucidate further its biological and health-related properties.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic.

          An expert panel was convened in October 2013 by the International Scientific Association for Probiotics and Prebiotics (ISAPP) to discuss the field of probiotics. It is now 13 years since the definition of probiotics and 12 years after guidelines were published for regulators, scientists and industry by the Food and Agriculture Organization of the United Nations and the WHO (FAO/WHO). The FAO/WHO definition of a probiotic--"live microorganisms which when administered in adequate amounts confer a health benefit on the host"--was reinforced as relevant and sufficiently accommodating for current and anticipated applications. However, inconsistencies between the FAO/WHO Expert Consultation Report and the FAO/WHO Guidelines were clarified to take into account advances in science and applications. A more precise use of the term 'probiotic' will be useful to guide clinicians and consumers in differentiating the diverse products on the market. This document represents the conclusions of the ISAPP consensus meeting on the appropriate use and scope of the term probiotic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae

            The genus Lactobacillus comprises 261 species (at March 2020) that are extremely diverse at phenotypic, ecological and genotypic levels. This study evaluated the taxonomy of Lactobacillaceae and Leuconostocaceae on the basis of whole genome sequences. Parameters that were evaluated included core genome phylogeny, (conserved) pairwise average amino acid identity, clade-specific signature genes, physiological criteria and the ecology of the organisms. Based on this polyphasic approach, we propose reclassification of the genus Lactobacillus into 25 genera including the emended genus Lactobacillus, which includes host-adapted organisms that have been referred to as the Lactobacillus delbrueckii group, Paralactobacillus and 23 novel genera for which the names Holzapfelia, Amylolactobacillus, Bombilactobacillus, Companilactobacillus, Lapidilactobacillus, Agrilactobacillus, Schleiferilactobacillus, Loigolactobacilus, Lacticaseibacillus, Latilactobacillus, Dellaglioa, Liquorilactobacillus, Ligilactobacillus, Lactiplantibacillus, Furfurilactobacillus, Paucilactobacillus, Limosilactobacillus, Fructilactobacillus, Acetilactobacillus, Apilactobacillus, Levilactobacillus, Secundilactobacillus and Lentilactobacillus are proposed. We also propose to emend the description of the family Lactobacillaceae to include all genera that were previously included in families Lactobacillaceae and Leuconostocaceae. The generic term 'lactobacilli' will remain useful to designate all organisms that were classified as Lactobacillaceae until 2020. This reclassification reflects the phylogenetic position of the micro-organisms, and groups lactobacilli into robust clades with shared ecological and metabolic properties, as exemplified for the emended genus Lactobacillus encompassing species adapted to vertebrates (such as Lactobacillus delbrueckii, Lactobacillus iners, Lactobacillus crispatus, Lactobacillus jensensii, Lactobacillus johnsonii and Lactobacillus acidophilus) or invertebrates (such as Lactobacillus apis and Lactobacillus bombicola).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phenotypic and genomic diversity of Lactobacillus plantarum strains isolated from various environmental niches.

              Lactobacillus plantarum is a ubiquitous microorganism that is able to colonize several ecological niches, including vegetables, meat, dairy substrates and the gastro-intestinal tract. An extensive phenotypic and genomic diversity analysis was conducted to elucidate the molecular basis of the high flexibility and versatility of this species. First, 185 isolates from diverse environments were phenotypically characterized by evaluating their fermentation and growth characteristics. Strains clustered largely together within their particular food niche, but human fecal isolates were scattered throughout the food clusters, suggesting that they originate from the food eaten by the individuals. Based on distinct phenotypic profiles, 24 strains were selected and, together with a further 18 strains from an earlier low-resolution study, their genomic diversity was evaluated by comparative genome hybridization against the reference genome of L. plantarum WCFS1. Over 2000 genes were identified that constitute the core genome of the L. plantarum species, including 121 unique L. plantarum-marker genes that have not been found in other lactic acid bacteria. Over 50 genes unique for the reference strain WCFS1 were identified that were absent in the other L. plantarum strains. Strains of the L. plantarum subspecies argentoratensis were found to lack a common set of 24 genes, organized in seven gene clusters/operons, supporting their classification as a separate subspecies. The results provide a detailed view on phenotypic and genomic diversity of L. plantarum and lead to a better comprehension of niche adaptation and functionality of the organism.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                BIOMID
                Biomedicines
                Biomedicines
                MDPI AG
                2227-9059
                November 2021
                November 19 2021
                : 9
                : 11
                : 1718
                Article
                10.3390/biomedicines9111718
                34829947
                43e7dbbf-0ddb-4d16-b165-8706d5020c77
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article