16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A survey of methods for data fusion and system adaptation using autonomic nervous system responses in physiological computing

      , ,
      Interacting with Computers
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references95

          • Record: found
          • Abstract: not found
          • Article: not found

          Autonomic nervous system activity in emotion: A review

          Autonomic nervous system (ANS) activity is viewed as a major component of the emotion response in many recent theories of emotion. Positions on the degree of specificity of ANS activation in emotion, however, greatly diverge, ranging from undifferentiated arousal, over acknowledgment of strong response idiosyncrasies, to highly specific predictions of autonomic response patterns for certain emotions. A review of 134 publications that report experimental investigations of emotional effects on peripheral physiological responding in healthy individuals suggests considerable ANS response specificity in emotion when considering subtypes of distinct emotions. The importance of sound terminology of investigated affective states as well as of choice of physiological measures in assessing ANS reactivity is discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A review of classification algorithms for EEG-based brain–computer interfaces

            In this paper we review classification algorithms used to design brain-computer interface (BCI) systems based on electroencephalography (EEG). We briefly present the commonly employed algorithms and describe their critical properties. Based on the literature, we compare them in terms of performance and provide guidelines to choose the suitable classification algorithm(s) for a specific BCI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A survey of affect recognition methods: audio, visual, and spontaneous expressions.

              Automated analysis of human affective behavior has attracted increasing attention from researchers in psychology, computer science, linguistics, neuroscience, and related disciplines. However, the existing methods typically handle only deliberately displayed and exaggerated expressions of prototypical emotions despite the fact that deliberate behaviour differs in visual appearance, audio profile, and timing from spontaneously occurring behaviour. To address this problem, efforts to develop algorithms that can process naturally occurring human affective behaviour have recently emerged. Moreover, an increasing number of efforts are reported toward multimodal fusion for human affect analysis including audiovisual fusion, linguistic and paralinguistic fusion, and multi-cue visual fusion based on facial expressions, head movements, and body gestures. This paper introduces and surveys these recent advances. We first discuss human emotion perception from a psychological perspective. Next we examine available approaches to solving the problem of machine understanding of human affective behavior, and discuss important issues like the collection and availability of training and test data. We finally outline some of the scientific and engineering challenges to advancing human affect sensing technology.
                Bookmark

                Author and article information

                Journal
                Interacting with Computers
                Interacting with Computers
                Elsevier BV
                09535438
                May 2012
                May 2012
                : 24
                : 3
                : 154-172
                Article
                10.1016/j.intcom.2012.04.003
                43ebaa17-1817-45f4-8ee6-8cf2b61707b0
                © 2012
                History

                Comments

                Comment on this article