10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii.

      Plant and Cell Physiology
      Animals, Chlamydomonas reinhardtii, drug effects, metabolism, Copper, pharmacology, Dose-Response Relationship, Drug, Gene Expression Regulation, Plant, Nitric Oxide, Plant Proteins, Proline, biosynthesis, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Excess copper affects the growth and metabolism of plants and green algae. However, the physiological processes under Cu stress are largely unknown. In this study, we investigated Cu-induced nitric oxide (NO) generation and its relationship to proline synthesis in Chlamydomonas reinhardtii. The test alga accumulated a large amount of proline after exposure to relatively low Cu concentrations (2.5 and 5.0 microM Cu2+). A concomitant increase in the intracellular NO level was observed with increasing concentrations of Cu applied. Data analysis revealed that the endogenous NO generated was positively associated with the proline level in Cu-stressed algae. The involvement of NO in Cu-induced proline accumulation was confirmed by using an NO-specific donor, sodium nitroprusside (SNP), and an NO scavenger cPTIO [2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide]. Pre-treatment with 10 microM SNP increased the proline accumulation in Cu-treated cells by about 1.5-fold, while this effect could be blocked by addition of 10 microM cPTIO. We further investigated the effect of Cu and NO on the activity and transcript amount of Delta(1)-pyrroline-5-carboxylate synthetase (P5CS, EC 2.7.2.11), the key enzyme of proline biosynthesis, and observed that application of SNP was able to stimulate the P5CS activity and up-regulate the expression of P5CS in the Cu-treated algae. These results indicate that Cu-responsive proline synthesis is closely related to NO generation in C. reinhardtii, suggesting the regulatory function of NO in proline metabolism under heavy metal stress.

          Related collections

          Author and article information

          Comments

          Comment on this article