6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A theatrical double-faced mask preserved at the Museum of Lipari (Messina): study and 3D reconstruction through portable equipment

      , , , ,
      Virtual Archaeology Review
      Universitat Politecnica de Valencia

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="VARKeywords">The new tools for 3D survey and modelling (as portable scanners and software packages), often in combination with diagnostics, are nowadays able to provide indispensable elements for the study of archaeological artefacts; their applications to museum’s heritage can be also useful to integrate the traditional graphic documentation and contribute to enhancement and dissemination. This paper shows the benefit of using the aforementioned tools to study the peculiar clay mask No. 11114-E, discovered in 1973 in the Greek necropolis of Lipára, inside tomb No. 1558. The specimen, now exhibited in the Classical Section of the Aeolian Museum, is considered unique both in the Aeolian Islands and in the ancient Greek world, as it is the only one merging two half faces attributable to different characters. This feature, unknown at the time of discovery, has been highlighted in 2018, thanks to a restoration intervention by which a hard concretion layer covering a large portion of the mask surface was removed, bringing to light a smiling young half-face next to an old one with Silenic features. In 2019, the mask was surveyed in situ through a portable and performing laser-scanner arm (the QuantumTM FaroArm by FARO) to produce a high-resolution 3D model useful to enhance the reading of the two halves (not evident enough, due to its state of preservation). The data processing was performed using the Geomagic Wrap software, able to align and merge multiple scans into a single model and to export results in multiple formats, easily shareable and viewable in free software or via the web. Finally, thanks to this method, the successful generation of a digital replica was performed; the resulting replica is useful for dissemination and as a support for the hypothetical reconstruction of the two prototypes taken as models by the craftsman who created the mask.</p><p><strong>Highlights:</strong></p><ul><li><p>A 'mobile laboratory’ consisting of portable equipment has been set up to perform 3D metric surveys on a selection of artefacts preserved at the Museum of Lipari.</p></li><li><p>By means of an ultra-precision laser-scanner arm, a 3D survey on a miniaturistic double-faced mask, belonging to the classical theatrical terracotta, has been performed.</p></li><li><p>A geometrically accurate and realistic 3D final model has been created. This helped the study and reconstruction of the two characters composing the mask.</p></li></ul>

          Related collections

          Most cited references16

          • Record: found
          • Abstract: not found
          • Article: not found

          Spectroscopic Techniques in Cultural Heritage Conservation: A Survey

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            In-situ fluorimetry: A powerful non-invasive diagnostic technique for natural dyes used in artefacts

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              3D mass digitization: a milestone for archeological documentation

              In the heritage field, the demand for fast and efficient 3D digitization technologies for historic remains is increasing. Besides, 3D digitization has proved to be a promising approach to enable precise reconstructions of objects. Yet, unlike the digital acquisition of cultural goods in 2D widely used today, 3D digitization often still requires a significant investment of time and money. To make it more widely available to heritage institutions, the Competence Center for Cultural Heritage Digitization at the Fraunhofer Institute for Computer Graphics Research IGD has developed CultLab3D , the world’s first 3D mass digitization facility for collections of three-dimensional objects. CultLab3D is specifically designed to automate the entire 3D digitization process thus allowing to scan and archive objects on a large-scale. Moreover, scanning and lighting technologies are combined to capture the exact geometry, texture, and optical material properties of artefacts to produce highly accurate photo-realistic representations. The unique setup allows to shorten the time needed for digitization to several minutes per artefact instead of hours, as required by conventional 3D scanning methods.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Virtual Archaeology Review
                Virtual archaeol. rev.
                Universitat Politecnica de Valencia
                1989-9947
                January 19 2021
                January 19 2021
                : 12
                : 24
                : 39
                Article
                10.4995/var.2021.13916
                43f64ff1-ff08-4dab-a047-78b2d1ed193e
                © 2021

                http://creativecommons.org/licenses/by-nc-nd/4.0

                History

                Comments

                Comment on this article