6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circulating exosomes from patients with peripheral artery disease influence vascular cell migration and contain distinct microRNA cargo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          Peripheral artery disease (PAD) is a chronic condition characterized by inflammation. Emerging literature suggests that circulating exosomes and their microRNA (miRNA) contents may influence atherosclerosis and vascular remodeling. We hypothesize that circulating exosomes in patients with PAD directly modulate vascular cell phenotype and contain proinflammatory miRNAs.

          Methods

          Exosomes (particle size, 30–150 nm) were isolated from plasma of healthy individuals (n = 6), patients with mild PAD (mPAD; median Rutherford class, 2.5; n = 6), and patients with severe PAD (sPAD; median Rutherford class, 4; n = 5). Exosome identity, size, and concentration were determined by Western blot and nanoparticle tracking analysis. Human vascular smooth muscle cell (VSMC) and endothelial cell (EC) migration was assessed by a standard wound closure assay after exposure to exosome preparations. Monocyte-derived macrophages isolated from healthy volunteers were exposed to exosome preparations, and targeted gene expression was analyzed using quantitative polymerase chain reaction. Exosome miRNA cargos were isolated, and a panel of defined, vascular-active miRNAs was assessed by quantitative polymerase chain reaction.

          Results

          There was no difference in overall exosome particle concentration or size between the three groups (one-way analysis of variance [ANOVA], P > .05). Compared with exosomes from healthy individuals, exosomes from mPAD and sPAD patients increased VSMC migration (1.0 ± 0.09-fold vs 1.5 ± 0.09-fold vs 2.0 ± 0.12-fold wound closure; ANOVA, P < .0001) and inhibited EC migration (1.8 ± 0.07-fold vs 1.5 ± 0.04-fold vs 1.3 ± 0.02-fold wound closure; ANOVA, P < .01) in a stepwise fashion. Exosomes also induced changes in monocyte-derived macrophage gene expression that did not appear PAD specific. Hierarchical analysis of exosome miRNA revealed distinct clustering of vascular-active miRNAs between the three groups. Several miRNAs that promote inflammatory pathways in vascular cells were expressed at higher levels in exosomes from sPAD patients.

          Conclusions

          Circulating exosomes from individuals with PAD exert in vitro functional effects on VSMCs and ECs that may promote adverse vessel remodeling. Exosomes from healthy individuals, mPAD patients, and sPAD patients contain distinct signatures of immune-regulatory miRNA. Together these data suggest that the proinflammatory cargo of circulating exosomes correlates with atherosclerosis severity in PAD patients and could influence vascular injury and repair. (JVS: Vascular Science 2020;1:28–41.)

          Clinical Relevance

          Exosomes and their cargo have been implicated in several vascular remodeling processes including atherosclerosis, angiogenesis, and neointimal hyperplasia. In this study, we demonstrate that circulating exosomes from individuals with peripheral artery disease exert in vitro effects on vascular cells that may adversely affect vessel remodeling. Moreover, these exosomes contain elevated levels of vascular-active microRNA. Our results suggest that exosomes may serve as both biomarkers and effectors of vascular disease in patients with peripheral artery disease and motivate further investigation into the role of exosomes and their contents in aberrant remodeling in vascular diseases.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of Inflammatory Response.

          Monocytes and macrophages are important components of the immune system, specialized in either removing pathogens as part of innate immunity or contributing to adaptive immunity through antigen presentation. Essential to such functions is classical activation (M1) and alternative activation (M2) of macrophages. M1 polarization of macrophages is characterized by production of pro-inflammatory cytokines, antimicrobial and tumoricidal activity, whereas M2 polarization of macrophages is linked to immunosuppression, tumorigenesis, wound repair, and elimination of parasites. MiRNAs are small non-coding RNAs with the ability to regulate gene expression and network of cellular processes. A number of studies have determined miRNA expression profiles in M1 and M2 polarized human and murine macrophages using microarray and RT-qPCR arrays techniques. More specifically, miR-9, miR-127, miR-155, and miR-125b have been shown to promote M1 polarization while miR-124, miR-223, miR-34a, let-7c, miR-132, miR-146a, and miR-125a-5p induce M2 polarization in macrophages by targeting various transcription factors and adaptor proteins. Further, M1 and M2 phenotypes play distinctive roles in cell growth and progression of inflammation-related diseases such as sepsis, obesity, cancer, and multiple sclerosis. Hence, miRNAs that modulate macrophage polarization may have therapeutic potential in the treatment of inflammation-related diseases. This review highlights recent findings in miRNA expression profiles in polarized macrophages from murine and human sources, and summarizes how these miRNAs regulate macrophage polarization. Last, therapeutic potential of miRNAs in inflammation-related diseases through modulation of macrophage polarization is also discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exosomal MicroRNA Transfer Into Macrophages Mediates Cellular Postconditioning.

            Cardiosphere-derived cells (CDCs) confer cardioprotection in acute myocardial infarction by distinctive macrophage (Mϕ) polarization. Here we demonstrate that CDC-secreted exosomes (CDCexo) recapitulate the cardioprotective effects of CDC therapy known as cellular postconditioning.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia.

              MicroRNAs (miRNAs) comprise a novel class of endogenous, small, noncoding RNAs that negatively regulate gene expression. Functionally, an individual miRNA is as important as a transcription factor because it is able to regulate the expression of its multiple target genes. Recently, miR-221 and miR-222 have been found to play a critical role in cancer cell proliferation. However, their roles in vascular smooth muscle cell (VSMC) biology are currently unknown. In the present study, the time course changes and cellular distribution of miR-221 and miR-222 expression were identified in rat carotid arteries after angioplasty, in which their expression was upregulated and localized in VSMCs in the injured vascular walls. In cultured VSMCs, miR-221 and miR-222 expression was increased by growth stimulators. Knockdown of miR-221 and miR-222 resulted in decreased VSMC proliferation in vitro. Using both gain-of-function and loss-of-function approaches, we found that p27(Kip1) and p57(Kip2) were 2 target genes that were involved in miR-221- and miR-222-mediated effect on VSMC growth. Finally, knockdown of miR-221 and miR-222 in rat carotid arteries suppressed VSMC proliferation in vivo and neointimal lesion formation after angioplasty. The results indicate that miR-221 and miR-222 are novel regulators for VSMC proliferation and neointimal hyperplasia. These findings may also represent promising therapeutic targets in proliferative vascular diseases.
                Bookmark

                Author and article information

                Journal
                101767073
                49607
                J Vasc Surg Vasc Sci
                J Vasc Surg Vasc Sci
                Journal of vascular surgery. Vascular science
                2666-3503
                27 May 2020
                28 February 2020
                2020
                17 June 2020
                : 1
                : 28-41
                Affiliations
                [a ]Department of Vascular and Endovascular Surgery, University of California
                [b ]San Francisco Veterans Affairs Medical Center
                Author notes

                AUTHOR CONTRIBUTIONS

                Conception and design: TS, RR, MSC

                Analysis and interpretation: TS, PD, LB, AO

                Data collection: TS, PD, LB, MC, AC, MS

                Writing the article: TS, PD

                Critical revision of the article: TS, PD, LB, MC, AC, MS, AO, RR, MSC

                Final approval of the article: TS, PD, LB, MC, AC, MS, AO, RR, MSC

                Statistical analysis: TS, PD

                Obtained funding: MSC

                Overall responsibility: MSC

                Correspondence: Michael Conte, MD, Department of Surgery, University of California, San Francisco, 400 Parnassus Ave, Ste 501, San Francisco, CA 94143 ( michael.conte2@ 123456ucsf.edu ).
                Article
                NIHMS1593951
                10.1016/j.jvssci.2020.02.001
                7299234
                32550603
                43f68be0-e905-44cf-9f5f-f6ee5b6d2fcc

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                peripheral artery disease,exosome,mirna,vascular remodeling,restenosis

                Comments

                Comment on this article