14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Restrictions in ATP diffusion within sarcomeres can provoke ATP-depleted zones impairing exercise capacity in chronic obstructive pulmonary disease.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic obstructive pulmonary disease (COPD) is characterized by the inability of patients to sustain a high level of ventilation resulting in perceived exertional discomfort and limited exercise capacity of leg muscles at average intracellular ATP levels sufficient to support contractility.

          Related collections

          Author and article information

          Journal
          Biochim. Biophys. Acta
          Biochimica et biophysica acta
          Elsevier BV
          0006-3002
          0006-3002
          October 2016
          : 1860
          : 10
          Affiliations
          [1 ] Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Internal Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA; Institute of Theoretical and Experimental Biophysics, Russian Academy of Science, Institutskaya 3, Pushchino, Moscow Region 142290, Russia. Electronic address: alekseev.alexey@mayo.edu.
          [2 ] Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France.
          [3 ] Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Internal Medicine, Department of Molecular Pharmacology & Experimental Therapeutics, Department of Medical Genetics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA.
          [4 ] Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics (LBFA), and SFR Environmental and Systems Biology (BEeSy), Grenoble, France; Inserm, U1055, Grenoble, France; Clinique Universitaire de Pneumologie, Pôle Thorax et Vaisseaux, Centre Hospitalier et Universitaire des Alpes, CS10217, 38043 Grenoble Cedex 9, France.
          [5 ] Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, and IBUB Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain.
          [6 ] Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, and IBUB Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain. Electronic address: martacascante@ub.edu.
          Article
          S0304-4165(16)30123-4
          10.1016/j.bbagen.2016.04.018
          27130881
          440a03b0-ebc2-4801-9ceb-e89bfa8c332a
          History

          Diffusion coefficient,Intracellular compartmentation,Myosin ATPase,Oxygen consumption,Rigor tension

          Comments

          Comment on this article