38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Chick Embryo Chorioallantoic Membrane as an In Vivo Assay to Study Antiangiogenesis

      review-article
      Pharmaceuticals
      Molecular Diversity Preservation International
      antiangiogenesis, chorioallantoic membrane, tumor progression

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antiangiogenesis, e.g., inhibition of blood vessel growth, is being investigated as a way to prevent the growth of tumors and other angiogenesis-dependent diseases. Pharmacological inhibition interferes with the angiogenic cascade or the immature neovasculature with synthetic or semi-synthetic substances, endogenous inhibitors or biological antagonists. The chick embryo chorioallantoic membrane (CAM) is an extraembryonic membrane, which serves as a gas exchange surface and its function is supported by a dense capillary network. Because its extensive vascularization and easy accessibility, CAM has been used to study morphofunctional aspects of the angiogenesis process in vivo and to study the efficacy and mechanism of action of pro- and anti-angiogenic molecules. The fields of application of CAM in the study of antiangiogenesis, including our personal experience, are illustrated in this review article.

          Related collections

          Most cited references362

          • Record: found
          • Abstract: found
          • Article: not found

          Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma.

          The phenomenon of inhibition of tumor growth by tumor mass has been repeatedly studied, but without elucidation of a satisfactory mechanism. In our animal model, a primary tumor inhibits its remote metastases. After tumor removal, metastases neovascularize and grow. When the primary tumor is present, metastatic growth is suppressed by a circulating angiogenesis inhibitor. Serum and urine from tumor-bearing mice, but not from controls, specifically inhibit endothelial cell proliferation. The activity copurifies with a 38 kDa plasminogen fragment that we have sequenced and named angiostatin. A corresponding fragment of human plasminogen has similar activity. Systemic administration of angiostatin, but not intact plasminogen, potently blocks neovascularization and growth of metastases. We here show that the inhibition of metastases by a primary mouse tumor is mediated, at least in part, by angiostatin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth.

            Neovascularization is critical for the growth of tumours and is a dominant feature in a variety of angiogenic diseases such as diabetic retinopathy, haemangiomas, arthritis and psoriasis. Recognition of the potential therapeutic benefit of controlling unabated capillary growth has led to a search for safe and effective angiogenesis inhibitors. We report here the synthesis of a family of novel inhibitors that are analogues of fumagillin, a naturally secreted antibiotic of Aspergillus fumigatus fresenius. We first isolated this fungus from a contaminated culture of capillary endothelial cells. Purified fumagillin inhibited endothelial cell proliferation in vitro and tumour-induced angiogenesis in vivo; it also inhibited tumour growth in mice, but prolonged administration was limited because it caused severe weight loss. Synthesis of fumagillin analogues yielded potent angiogenesis inhibitors ('angioinhibins') which suppress the growth of a wide variety of tumours with relatively few side-effects.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Definition of two angiogenic pathways by distinct alpha v integrins.

              Angiogenesis depends on cytokines and vascular cell adhesion events. Two cytokine-dependent pathways of angiogenesis were shown to exist and were defined by their dependency on distinct vascular cell integrins. In vivo angiogenesis in corneal or chorioallantoic membrane models induced by basic fibroblast growth factor or by tumor necrosis factor-alpha depended on alpha v beta 3, whereas angiogenesis initiated by vascular endothelial growth factor, transforming growth factor-alpha, or phorbol ester depended on alpha v beta 5. Antibody to each integrin selectively blocked one of these pathways, and a cyclic peptide antagonist of both integrins blocked angiogenesis stimulated by each cytokine tested. These pathways are further distinguished by their sensitivity to calphostin C, an inhibitor of protein kinase C that blocked angiogenesis potentiated by alpha v beta 5 but not by alpha v beta 3.
                Bookmark

                Author and article information

                Journal
                Pharmaceuticals (Basel)
                Pharmaceuticals (Basel)
                pharmaceuticals
                Pharmaceuticals
                Molecular Diversity Preservation International
                1424-8247
                08 March 2010
                March 2010
                : 3
                : 3
                : 482-513
                Affiliations
                Department of Human Anatomy and Histology, University of Bari Medical School, Piazza G. Cesare, 11, Policlinico 70124, Bari, Italy; Email: ribatti@ 123456anatomia.uniba.it ; Tel.: +39-080-547-8240; Fax: +39-080-547-8310.
                Article
                pharmaceuticals-03-00482
                10.3390/ph3030482
                4033966
                27713265
                440e69a8-736f-40ec-9d16-3581501669bf
                © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 12 January 2010
                : 29 January 2010
                : 02 March 2010
                Categories
                Review

                antiangiogenesis,chorioallantoic membrane,tumor progression

                Comments

                Comment on this article