13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Immunological Features of Respiratory Syncytial Virus-Caused Pneumonia—Implications for Vaccine Design

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The human respiratory syncytial virus (hRSV) is the causative agent for high rates of hospitalizations due to viral bronchiolitis and pneumonia worldwide. Such a disease is characterized by an infection of epithelial cells of the distal airways that leads to inflammation and subsequently to respiratory failure. Upon infection, different pattern recognition receptors recognize the virus and trigger the innate immune response against the hRSV. Further, T cell immunity plays an important role for virus clearance. Based on animal studies, it is thought that the host immune response to hRSV is based on a biased T helper (Th)-2 and Th17 T cell responses with the recruitment of T cells, neutrophils and eosinophils to the lung, causing inflammation and tissue damage. In contrast, human immunity against RSV has been shown to be more complex with no definitive T cell polarization profile. Nowadays, only a humanized monoclonal antibody, known as palivizumab, is available to protect against hRSV infection in high-risk infants. However, such treatment involves several injections at a significantly high cost. For these reasons, intense research has been focused on finding novel vaccines or therapies to prevent hRSV infection in the population. Here, we comprehensively review the recent literature relative to the immunological features during hRSV infection, as well as the new insights into preventing the disease caused by this virus.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Community-acquired pneumonia requiring hospitalization among U.S. children.

          Incidence estimates of hospitalizations for community-acquired pneumonia among children in the United States that are based on prospective data collection are limited. Updated estimates of pneumonia that has been confirmed radiographically and with the use of current laboratory diagnostic tests are needed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.

            The innate immune system contributes to the earliest phase of the host defense against foreign organisms and has both soluble and cellular pattern recognition receptors for microbial products. Two important members of this receptor group, CD14 and the Toll-like receptor (TLR) pattern recognition receptors, are essential for the innate immune response to components of Gram-negative and Gram-positive bacteria, mycobacteria, spirochetes and yeast. We now find that these receptors function in an antiviral response as well. The innate immune response to the fusion protein of an important respiratory pathogen of humans, respiratory syncytial virus (RSV), was mediated by TLR4 and CD14. RSV persisted longer in the lungs of infected TLR4-deficient mice compared to normal mice. Thus, a common receptor activation pathway can initiate innate immune responses to both bacterial and viral pathogens.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An epidemiologic study of altered clinical reactivity to respiratory syncytial (RS) virus infection in children previously vaccinated with an inactivated RS virus vaccine.

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                04 March 2017
                March 2017
                : 18
                : 3
                : 556
                Affiliations
                [1 ]Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330644, Chile; erey@ 123456bio.puc.cl
                [2 ]Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330644, Chile
                Author notes
                [* ]Correspondence: akalergis@ 123456bio.puc.cl ; Tel.: +56-922-686-2842
                Article
                ijms-18-00556
                10.3390/ijms18030556
                5372572
                28273842
                4417a279-c409-44a1-8fe7-45ee15717b96
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 December 2016
                : 26 February 2017
                Categories
                Review

                Molecular biology
                human respiratory syncytial virus,pneumonia,host immunity,vaccines and therapies

                Comments

                Comment on this article