42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

      , , , , ,
      Nature Physics
      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Characterizing the correlations of quantum many-body systems is known to be hard, but there are ways around: for example, a new method for measuring out-of-time correlations demonstrated in a Penning trap quantum simulator with over 100 ions.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Creation of a six-atom 'Schrödinger cat' state.

          Among the classes of highly entangled states of multiple quantum systems, the so-called 'Schrödinger cat' states are particularly useful. Cat states are equal superpositions of two maximally different quantum states. They are a fundamental resource in fault-tolerant quantum computing and quantum communication, where they can enable protocols such as open-destination teleportation and secret sharing. They play a role in fundamental tests of quantum mechanics and enable improved signal-to-noise ratios in interferometry. Cat states are very sensitive to decoherence, and as a result their preparation is challenging and can serve as a demonstration of good quantum control. Here we report the creation of cat states of up to six atomic qubits. Each qubit's state space is defined by two hyperfine ground states of a beryllium ion; the cat state corresponds to an entangled equal superposition of all the atoms in one hyperfine state and all atoms in the other hyperfine state. In our experiments, the cat states are prepared in a three-step process, irrespective of the number of entangled atoms. Together with entangled states of a different class created in Innsbruck, this work represents the current state-of-the-art for large entangled states in any qubit system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Many body localization and thermalization in quantum statistical mechanics

            We review some recent developments in the statistical mechanics of isolated quantum systems. We provide a brief introduction to quantum thermalization, paying particular attention to the `Eigenstate Thermalization Hypothesis' (ETH), and the resulting `single-eigenstate statistical mechanics'. We then focus on a class of systems which fail to quantum thermalize and whose eigenstates violate the ETH: These are the many-body Anderson localized systems; their long-time properties are not captured by the conventional ensembles of quantum statistical mechanics. These systems can locally remember forever information about their local initial conditions, and are thus of interest for possibilities of storing quantum information. We discuss key features of many-body localization (MBL), and review a phenomenology of the MBL phase. Single-eigenstate statistical mechanics within the MBL phase reveals dynamically-stable ordered phases, and phase transitions among them, that are invisible to equilibrium statistical mechanics and can occur at high energy and low spatial dimensionality where equilibrium ordering is forbidden.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quasiparticle engineering and entanglement propagation in a quantum many-body system.

              The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.
                Bookmark

                Author and article information

                Journal
                Nature Physics
                Nat Phys
                Springer Nature
                1745-2473
                1745-2481
                May 22 2017
                May 22 2017
                :
                :
                Article
                10.1038/nphys4119
                44261275-1fe7-4e38-b571-7e0fd54b754e
                © 2017
                History

                Comments

                Comment on this article