83
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A novel transgenic zebrafish model for blood-brain and blood-retinal barrier development

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Development and maintenance of the blood-brain and blood-retinal barrier is critical for the homeostasis of brain and retinal tissue. Despite decades of research our knowledge of the formation and maintenance of the blood-brain (BBB) and blood-retinal (BRB) barrier is very limited. We have established an in vivo model to study the development and maintenance of these barriers by generating a transgenic zebrafish line that expresses a vitamin D-binding protein fused with enhanced green fluorescent protein (DBP-EGFP) in blood plasma, as an endogenous tracer.

          Results

          The temporal establishment of the BBB and BRB was examined using this transgenic line and the results were compared with that obtained by injection of fluorescent dyes into the sinus venosus of embryos at various stages of development. We also examined the expression of claudin-5, a component of tight junctions during the first 4 days of development. We observed that the BBB of zebrafish starts to develop by 3 dpf, with expression of claudin-5 in the central arteries preceding it at 2 dpf. The hyaloid vasculature in the zebrafish retina develops a barrier function at 3 dpf, which endows the zebrafish with unique advantages for studying the BRB.

          Conclusion

          Zebrafish embryos develop BBB and BRB function simultaneously by 3 dpf, which is regulated by tight junction proteins. The Tg(l-fabp:DBP-EGFP) zebrafish will have great advantages in studying development and maintenance of the blood-neural barrier, which is a new application for the widely used vertebrate model.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications.

          Human pathologies such as vascular malformations, hemorrhagic stroke, and edema have been associated with defects in the organization of endothelial cell junctions. Understanding the molecular basis of these diseases requires different integrated approaches which include basic cell biology, clinical studies, and studies in animal models such as mice and zebrafish. In this review we discuss recent findings derived from these approaches and their possible integration in a common picture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development.

            We have used confocal microangiography to examine and describe the vascular anatomy of the developing zebrafish, Danio rerio. This method and the profound optical clarity of zebrafish embryos make it possible to view the entire developing vasculature with unprecedented resolution. A staged series of three-dimensional images of the vascular system were collected beginning shortly after the onset of circulation at 1 day postfertilization through early- to midlarval stages at approximately 7 days postfertilization. Blood vessels in every region of the animal were imaged at each stage, and detailed "wiring patterns" were derived describing the interconnections between every major vessel. We present an overview of these data here in this paper and in an accompanying Web site "The interactive atlas of zebrafish vascular anatomy" online at (http://eclipse.nichd.nih.gov/nichd/lmg/redirect.html). We find a highly dynamic but also highly stereotypic pattern of vascular connections, with different sets of primitive embryonic vessels severing connections and rewiring in new configurations according to a reproducible plan. We also find that despite variation in the details of the vascular anatomy, the basic vascular plan of the developing zebrafish shows strong similarity to that of other vertebrates. This atlas will provide an invaluable foundation for future genetic and experimental studies of vascular development in the zebrafish.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier.

              Disruption of the tight junctions (TJs) of the blood-brain barrier (BBB) is a hallmark of many CNS pathologies, including stroke, HIV encephalitis, Alzheimer's disease, multiple sclerosis and bacterial meningitis. Furthermore, systemic-derived inflammation has recently been shown to cause BBB tight junctional disruption and increased paracellular permeability. The BBB is capable of rapid modulation in response to physiological stimuli at the cytoskeletal level, which enables it to protect the brain parenchyma and maintain a homeostatic environment. By allowing the "loosening" of TJs and an increase in paracellular permeability, the BBB is able to "bend without breaking"; thereby, maintaining structural integrity.
                Bookmark

                Author and article information

                Journal
                BMC Dev Biol
                BMC Developmental Biology
                BioMed Central
                1471-213X
                2010
                23 July 2010
                : 10
                : 76
                Affiliations
                [1 ]Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
                [2 ]Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA
                Article
                1471-213X-10-76
                10.1186/1471-213X-10-76
                2914679
                20653957
                4439f651-5cf6-439b-afb9-d5ef0a1a88d9
                Copyright ©2010 Xie et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 March 2010
                : 23 July 2010
                Categories
                Research Article

                Developmental biology
                Developmental biology

                Comments

                Comment on this article