20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microglial CD206 Gene Has Potential as a State Marker of Bipolar Disorder

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathophysiology of bipolar disorder, especially the underlying mechanisms of the bipolarity between manic and depressive states, has yet to be clarified. Microglia, immune cells in the brain, play important roles in the process of brain inflammation, and recent positron emission tomography studies have indicated microglial overactivation in the brain of patients with bipolar disorder. We have recently developed a technique to induced microglia-like (iMG) cells from peripheral blood (monocytes). We introduce a novel translational approach focusing on bipolar disorder using this iMG technique. We hypothesize that immunological conditional changes in microglia may contribute to the shift between manic and depressive states, and thus we herein analyzed gene profiling patterns of iMG cells from three patients with rapid cycling bipolar disorder during both manic and depressive states, respectively. We revealed that the gene profiling patterns are different between manic and depressive states. The profiling pattern of case 1 showed that M1 microglia is dominant in the manic state compared to the depressive state. However, the patterns of cases 2 and 3 were not consistent with the pattern of case 1. CD206, a mannose receptor known as a typical M2 marker, was significantly downregulated in the manic state among all three patients. This is the first report to indicate the importance of shifting microglial M1/M2 characteristics, especially the CD206 gene expression pattern between depressive and manic states. Further translational studies are needed to dig up the microglial roles in the underlying biological mechanisms of bipolar disorder.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders.

          Psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia, affect a significant percentage of the world population. These disorders are associated with educational difficulties, decreased productivity and reduced quality of life, but their underlying pathophysiological mechanisms are not fully elucidated. Recently, studies have suggested that psychiatric disorders could be considered as inflammatory disorders, even though the exact mechanisms underlying this association are not known. An increase in inflammatory response and oxidative stress may lead to inflammation, which in turn can stimulate microglia in the brain. Microglial activation is roused by the M1 phenotype, which is associated with an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). On the contrary, M2 phenotype is associated with a release of anti-inflammatory cytokines. Thus, it is possible that the inflammatory response from microglial activation can contribute to brain pathology, as well as influence treatment responses. This review will highlight the role of inflammation in the pathophysiology of psychiatric disorders, such as MDD, BD, schizophrenia, and autism. More specifically, the role of microglial activation and associated molecular cascades will also be discussed as a means by which these neuroinflammatory mechanisms take place, when appropriate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study.

            Schizophrenia is a brain disease involving progressive loss of gray matter of unknown cause. Most likely, this loss reflects neuronal damage, which should, in turn, be accompanied by microglia activation. Microglia activation can be quantified in vivo using (R)-[(11)C]PK11195 and positron emission tomography (PET). The purpose of this study was to investigate whether microglia activation occurs in patients with recent-onset schizophrenia. Ten patients with recent-onset schizophrenia and 10 age-matched healthy control subjects were included. A fully quantitative (R)-[(11)C]PK11195 PET scan was performed on all subjects, including arterial sampling to generate a metabolite-corrected input curve. Compared with control subjects, binding potential of (R)-[(11)C]PK11195 in total gray matter was increased in patients with schizophrenia. There were no differences in other PET parameters. Activated microglia are present in schizophrenia patients within the first 5 years of disease onset. This suggests that, in this period, neuronal injury is present and that neuronal damage may be involved in the loss of gray matter associated with this disease. Microglia may form a novel target for neuroprotective therapies in schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microglial activation in young adults with autism spectrum disorder.

              A growing body of evidence suggests that aberrant immunologic systems underlie the pathophysiologic characteristics of autism spectrum disorder (ASD). However, to our knowledge, no information is available on the patterns of distribution of microglial activation in the brain in ASD. To identify brain regions associated with excessively activated microglia in the whole brain, and to examine similarities in the pattern of distribution of activated microglia in subjects with ASD and control subjects. Case-control study using positron emission tomography and a radiotracer for microglia--[11C](R)-(1-[2-chrorophynyl]-N-methyl-N-[1-methylpropyl]-3 isoquinoline carboxamide) ([11C](R)-PK11195). Subjects recruited from the community. Twenty men with ASD (age range, 18-31 years; mean [SD] IQ, 95.9 [16.7]) and 20 age- and IQ-matched healthy men as controls. Diagnosis of ASD was made in accordance with the Autism Diagnostic Observation Schedule and the Autism Diagnostic Interview-Revised. Regional brain [11C](R)-PK11195 binding potential as a representative measure of microglial activation. The [11C](R)-PK11195 binding potential values were significantly higher in multiple brain regions in young adults with ASD compared with those of controls (P < .05, corrected). Brain regions with increased binding potentials included the cerebellum, midbrain, pons, fusiform gyri, and the anterior cingulate and orbitofrontal cortices. The most prominent increase was observed in the cerebellum. The pattern of distribution of [11C](R)-PK11195 binding potential values in these brain regions of ASD and control subjects was similar, whereas the magnitude of the [11C](R)-PK11195 binding potential in the ASD group was greater than that of controls in all regions. Our results indicate excessive microglial activation in multiple brain regions in young adult subjects with ASD. The similar distribution pattern of regional microglial activity in the ASD and control groups may indicate augmented but not altered microglial activation in the brain in the subjects with ASD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                09 January 2017
                2016
                : 7
                : 676
                Affiliations
                [1] 1Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
                [2] 2Innovation Center for Medical Redox Navigation, Kyushu University , Fukuoka, Japan
                [3] 3Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga, Japan
                Author notes

                Edited by: Björn Tackenberg, University of Marburg, Germany

                Reviewed by: Björn Spittau, University of Freiburg, Germany; Christiane Charriaut-Marlangue, INSERM, France

                *Correspondence: Takahiro A. Kato, takahiro@ 123456npsych.med.kyushu-u.ac.jp

                Specialty section: This article was submitted to Multiple Sclerosis and Neuroimmunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2016.00676
                5220016
                28119691
                4440de0e-f1f5-4585-b743-f3c7838be786
                Copyright © 2017 Ohgidani, Kato, Haraguchi, Matsushima, Mizoguchi, Murakawa-Hirachi, Sagata, Monji and Kanba.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 30 September 2016
                : 21 December 2016
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 38, Pages: 6, Words: 3230
                Categories
                Immunology
                Perspective

                Immunology
                bipolar disorder,rapid cycling,microglia,cd206,induced microglia-like (img) cells,state marker,m1/m2 polarization,translational research

                Comments

                Comment on this article