39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wear and tear from tyres significantly contributes to the flow of (micro-)plastics into the environment. This paper compiles the fragmented knowledge on tyre wear and tear characteristics, amounts of particles emitted, pathways in the environment, and the possible effects on humans. The estimated per capita emission ranges from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. The emissions from car tyres (100%) are substantially higher than those of other sources of microplastics, e.g., airplane tyres (2%), artificial turf (12–50%), brake wear (8%) and road markings (5%). Emissions and pathways depend on local factors like road type or sewage systems. The relative contribution of tyre wear and tear to the total global amount of plastics ending up in our oceans is estimated to be 5–10%. In air, 3–7% of the particulate matter (PM 2.5) is estimated to consist of tyre wear and tear, indicating that it may contribute to the global health burden of air pollution which has been projected by the World Health Organization (WHO) at 3 million deaths in 2012. The wear and tear also enters our food chain, but further research is needed to assess human health risks. It is concluded here that tyre wear and tear is a stealthy source of microplastics in our environment, which can only be addressed effectively if awareness increases, knowledge gaps on quantities and effects are being closed, and creative technical solutions are being sought. This requires a global effort from all stakeholders; consumers, regulators, industry and researchers alike.

          Related collections

          Most cited references113

          • Record: found
          • Abstract: found
          • Article: not found

          Plastic and human health: a micro issue?

          Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to bioaccumulation, particle toxicity, and chemical and microbial contaminants were critically examined. Whilst this is an emerging field, complimentary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may bioaccumulate and exert localised particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localised leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect which could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Whilst there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microplastics in bivalves cultured for human consumption.

            Microplastics are present throughout the marine environment and ingestion of these plastic particles (<1 mm) has been demonstrated in a laboratory setting for a wide array of marine organisms. Here, we investigate the presence of microplastics in two species of commercially grown bivalves: Mytilus edulis and Crassostrea gigas. Microplastics were recovered from the soft tissues of both species. At time of human consumption, M. edulis contains on average 0.36 ± 0.07 particles g(-1) (wet weight), while a plastic load of 0.47 ± 0.16 particles g(-1) ww was detected in C. gigas. As a result, the annual dietary exposure for European shellfish consumers can amount to 11,000 microplastics per year. The presence of marine microplastics in seafood could pose a threat to food safety, however, due to the complexity of estimating microplastic toxicity, estimations of the potential risks for human health posed by microplastics in food stuffs is not (yet) possible.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Are Agricultural Soils Dumps for Microplastics of Urban Origin?

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                20 October 2017
                October 2017
                : 14
                : 10
                : 1265
                Affiliations
                [1 ]Department of Science, Faculty of Management, Science & Technology, Open University of The Netherlands, 6419 AT Heerlen, The Netherlands; PJ.Kole@ 123456studie.ou.nl (P.J.K.); Ansje.Lohr@ 123456ou.nl (A.J.L.); Frank.vanBelleghem@ 123456ou.nl (F.G.A.J.V.B.)
                [2 ]Zoology: Biodiversity and Toxicology, Centre for Environmental Sciences, Hasselt University, BE 3590 Diepenbeek, Belgium
                [3 ]Institute of Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, 6525 AJ Nijmegen, The Netherlands
                Author notes
                [* ]Correspondence: Ad.Ragas@ 123456ou.nl ; Tel.: +31-24-3653284
                Article
                ijerph-14-01265
                10.3390/ijerph14101265
                5664766
                29053641
                444a8912-b53d-42f5-9c46-1fb553db6c84
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 31 July 2017
                : 16 October 2017
                Categories
                Review

                Public health
                tyre wear and tear,microplastics,particulate matter,tyre rubber
                Public health
                tyre wear and tear, microplastics, particulate matter, tyre rubber

                Comments

                Comment on this article