13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      New low molecular weight polycation-based nanoparticles for effective codelivery of pDNA and drug.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The development of new cationic nanoparticles that are safe and effective for biomedical applications has attracted considerable attention. Low molecular weight polycations generally exhibit low toxicity; however, their poor efficiency in drug delivery systems hampers their application. In this work, a series of new low molecular weight 2,6-bis(1-methylbenzimidazolyl)pyridinyl (BIP)-terminated ethanolamine-functionalized poly(glycidyl methacrylate)s (BIP-PGEAs) were readily fabricated for effective codelivery of a gene and a drug. The BIP-PGEAs could form well-defined cationic nanoparticles (NPs) in an aqueous solution. They could effectively bind pDNA with an appropriate particle size and ζ-potential. More importantly, the BIP-PGEA NPs demonstrated much higher transfection efficiencies than linear PGEA (L-PGEA) and the traditional "gold-standard" branched polyethylenimine (25 kDa). Moreover, the BIP-PGEA NPs could effectively entrap a hydrophobic anticancer drug such as 10-hydroxy camptothecin (CPT). The synergistic antitumor effect of the BIP-PGEA-CPT NPs was demonstrated by employing a suicide gene therapy system, which contained cytosine deaminase and 5-fluorocytosine (CD/5-FC). The present strategy for preparing well-defined cationic nanoparticles from low-molecular-weight polycations could provide an intriguing method to produce new multifunctional, therapeutic NPs.

          Related collections

          Author and article information

          Journal
          ACS Appl Mater Interfaces
          ACS applied materials & interfaces
          American Chemical Society (ACS)
          1944-8252
          1944-8244
          Oct 22 2014
          : 6
          : 20
          Affiliations
          [1 ] State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology , Beijing 100029, China.
          Article
          10.1021/am5046179
          25247587
          445136e6-eccd-4906-8f25-8ff5682fe558
          History

          ATRP,amphiphilic polymers,delivery,gene vector,nanoparticles

          Comments

          Comment on this article