52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Observation of antiferromagnetic correlations in the Hubbard model with ultracold atoms

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultracold atoms in optical lattices have great potential to contribute to a better understanding of some of the most important issues in many-body physics, such as high-\(T_c\) superconductivity. The Hubbard model describes many of the features shared by the copper oxides, including an interaction-driven Mott insulating state and an antiferromagnetic (AFM) state. Optical lattices filled with a two-spin-component Fermi gas of ultracold atoms can faithfully realise the Hubbard model with readily tunable parameters, and thus provide a platform for the systematic exploration of its phase diagram. Realisation of strongly correlated phases, however, has been hindered by the need to cool the atoms to temperatures as low as the magnetic exchange energy, and also by the lack of reliable thermometry. Here we demonstrate spin-sensitive Bragg scattering of light to measure AFM spin correlations in a realisation of the 3D Hubbard model at temperatures down to 1.4 times that of the AFM phase transition. This temperature regime is beyond the range of validity of a simple high-temperature series expansion, which brings our experiment close to the limit of the capabilities of current numerical techniques. We reach these low temperatures using a unique compensated optical lattice technique, in which the confinement of each lattice beam is compensated by a blue-detuned laser beam. The temperature of the atoms in the lattice is deduced by comparing the light scattering to determinantal quantum Monte Carlo and numerical linked-cluster expansion calculations. Further refinement of the compensated lattice may produce even lower temperatures which, along with light scattering thermometry, would open avenues for achieving and characterising other novel quantum states of matter, such as the pseudogap regime of the 2D Hubbard model.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Quantum simulation of frustrated Ising spins with trapped ions.

          A network is frustrated when competing interactions between nodes prevent each bond from being satisfied. This compromise is central to the behaviour of many complex systems, from social and neural networks to protein folding and magnetism. Frustrated networks have highly degenerate ground states, with excess entropy and disorder even at zero temperature. In the case of quantum networks, frustration can lead to massively entangled ground states, underpinning exotic materials such as quantum spin liquids and spin glasses. Here we realize a quantum simulation of frustrated Ising spins in a system of three trapped atomic ions, whose interactions are precisely controlled using optical forces. We study the ground state of this system as it adiabatically evolves from a transverse polarized state, and observe that frustration induces extra degeneracy. We also measure the entanglement in the system, finding a link between frustration and ground-state entanglement. This experimental system can be scaled to simulate larger numbers of spins, the ground states of which (for frustrated interactions) cannot be simulated on a classical computer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice

            The fermionic Hubbard model plays a fundamental role in the description of strongly correlated materials. Here we report on the realization of this Hamiltonian using a repulsively interacting spin mixture of ultracold \(^{40}\)K atoms in a 3D optical lattice. We have implemented a new method to directly measure the compressibility of the quantum gas in the trap using in-situ imaging and independent control of external confinement and lattice depth. Together with a comparison to ab-initio Dynamical Mean Field Theory calculations, we show how the system evolves for increasing confinement from a compressible dilute metal over a strongly-interacting Fermi liquid into a band insulating state. For strong interactions, we find evidence for an emergent incompressible Mott insulating phase.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Engineered 2D Ising interactions on a trapped-ion quantum simulator with hundreds of spins

              The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed matter systems, potentially including high-temperature superconductivity. However, many properties of exotic strongly correlated spin systems (e.g., spin liquids) have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N~30 particles. Feynman divined that a quantum simulator - a special-purpose "analog" processor built using quantum particles (qubits) - would be inherently adept at such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach. However, simulations of quantum magnetism allowing controlled, tunable interactions between spins localized on 2D and 3D lattices of more than a few 10's of qubits have yet to be demonstrated, owing in part to the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction J_ij on a naturally occurring 2D triangular crystal lattice of hundreds of spin-1/2 particles (9Be+ ions stored in a Penning trap), a computationally relevant scale more than an order of magnitude larger than existing experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J_ij ~ 1/d_ij^a, where a is tunable over 0
                Bookmark

                Author and article information

                Journal
                2014-07-22
                2015-01-31
                Article
                10.1038/nature14223
                1407.5932
                4456f81c-2437-4234-bc2a-8855f6da12c2

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Nature 519, 211-214 (2015)
                cond-mat.quant-gas

                Quantum gases & Cold atoms
                Quantum gases & Cold atoms

                Comments

                Comment on this article