11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lipocalin 2 induces neuroinflammation and blood-brain barrier dysfunction through liver-brain axis in murine model of nonalcoholic steatohepatitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Recent clinical and basic research implicated a strong correlation between NAFLD/NASH phenotypes with ectopic manifestations including neuroinflammation and neurodegeneration, but the mediators and critical pathways involved are not well understood. Lipocalin 2 (Lcn2) is one of the important mediators exclusively produced in the liver and circulation during NASH pathology.

          Methods

          Using murine model of NASH, we studied the role of Lcn2 as a potent mediator of neuroinflammation and neurodegeneration in NASH pathology via the liver-brain axis.

          Results

          Results showed that high circulatory Lcn2 activated 24p3R (Lipocalin2 receptor) in the brain and induced the release of high mobility group box 1 (HMGB1) preferably from brain cells. Released HMGB1 acted as a preferential ligand to toll-like receptor 4 (TLR4) and induced oxidative stress by activation of NOX-2 signaling involving activated p65 protein of the NF-κB complex. Further, the HMGB1-derived downstream signaling cascade activated NLRP3 inflammasome and release of proinflammatory cytokines IL-6 and IL-1β from brain cells. In addition, to advance our present understanding, in vitro studies were performed in primary brain endothelial cells where results showed high circulatory Lcn2 influenced HMGB1 secretion. Mechanistically, we also showed that elevated Lcn2 level in underlying NASH might be a likely cause for induction of blood-brain barrier dysfunction since the adipokine decreased the expression of tight junction protein Claudin 5 and caused subsequent elevation of pro-inflammatory cytokines IL-6 and IL-1β.

          Conclusion

          In conclusion, the NASH-induced brain pathology might be because of increased Lcn2-induced release of HMGB1 and accompanying neuroinflammation.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          The NLRP3 inflammasome: molecular activation and regulation to therapeutics

          NLRP3 (NACHT, LRR and PYD domains-containing protein 3) is an intracellular sensor that detects a broad range of microbial motifs, endogenous danger signals and environmental irritants, resulting in the formation and activation of the NLRP3 inflammasome. Assembly of the NLRP3 inflammasome leads to caspase-1-dependent release of the proinflammatory cytokines, IL-1β and IL-18, as well as to gasdermin D-mediated pyroptotic cell death. Recent studies have revealed new regulators of the NLRP3 inflammasome, including new interacting or regulatory proteins, metabolic pathways and a regulatory mitochondrial hub. In this Review, we present the molecular, cell biological and biochemical basis of NLRP3 activation and regulation, and describe how this mechanistic understanding is leading to potential therapeutics that target the NLRP3 inflammasome.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia and macrophages in brain homeostasis and disease

            Microglia and non-parenchymal macrophages in the brain are mononuclear phagocytes that are increasingly recognized to be essential players in the development, homeostasis and diseases of the central nervous system. With the availability of new genetic, molecular and pharmacological tools, considerable advances have been made towards our understanding of the embryonic origins, developmental programmes and functions of these cells. These exciting discoveries, some of which are still controversial, also raise many new questions, which makes brain macrophage biology a fast-growing field at the intersection of neuroscience and immunology. Here, we review the current knowledge of how and where brain macrophages are generated, with a focus on parenchymal microglia. We also discuss their normal functions during development and homeostasis, the disturbance of which may lead to various neurodegenerative and neuropsychiatric diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.

              We studied the accumulation of neurofibrillary tangles (NFTs) and senile plaques (SPs) in 10 Alzheimer's disease patients who had been examined during life. We counted NFTs and SPs in 13 cytoarchitectural regions representing limbic, primary sensory, and association cortices, and in subcortical neurotransmitter-specific areas. The degree of neuropathologic change was compared with the severity of dementia, as assessed by the Blessed Dementia Scale and duration of illness. We found that (1) the severity of dementia was positively related to the number of NFTs in neocortex, but not to the degree of SP deposition; (2) NFTs accumulate in a consistent pattern reflecting hierarchic vulnerability of individual cytoarchitectural fields; (3) NFTs appeared in the entorhinal cortex, CA1/subiculum field of the hippocampal formation, and the amygdala early in the disease process; and (4) the degree of SP deposition was also related to a hierarchic vulnerability of certain brain areas to accumulate SPs, but the pattern of SP distribution was different from that of NFT.
                Bookmark

                Author and article information

                Contributors
                schatt@mailbox.sc.edu
                Journal
                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                1742-2094
                4 July 2020
                4 July 2020
                2020
                : 17
                : 201
                Affiliations
                [1 ]GRID grid.254567.7, ISNI 0000 0000 9075 106X, Environmental Health and Disease Laboratory, Department of Environmental Health Sciences, , University of South Carolina, ; Columbia, SC 29208 USA
                [2 ]GRID grid.254567.7, ISNI 0000 0000 9075 106X, Pathology, Microbiology and Immunology, , University of South Carolina School of Medicine, ; Columbia, SC USA
                Article
                1876
                10.1186/s12974-020-01876-4
                7335438
                32622362
                4456f987-ff14-4b9a-8950-bfbc66031f02
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 26 February 2020
                : 22 June 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: 1-P01-ES-028942-01
                Award ID: 2-P20-GM-103641-06
                Award ID: P01-AT-003961
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Neurosciences
                lcn-2,mcd,nash,nox-2,redox signaling,tlr4,nlrp3
                Neurosciences
                lcn-2, mcd, nash, nox-2, redox signaling, tlr4, nlrp3

                Comments

                Comment on this article