7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Brain alterations in low-frequency fluctuations across multiple bands in obsessive compulsive disorder

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI.

          In children with attention deficit hyperactivity disorder (ADHD), functional neuroimaging studies have revealed abnormalities in various brain regions, including prefrontal-striatal circuit, cerebellum, and brainstem. In the current study, we used a new marker of functional magnetic resonance imaging (fMRI), amplitude of low-frequency (0.01-0.08Hz) fluctuation (ALFF) to investigate the baseline brain function of this disorder. Thirteen boys with ADHD (13.0+/-1.4 years) were examined by resting-state fMRI and compared with age-matched controls. As a result, we found that patients with ADHD had decreased ALFF in the right inferior frontal cortex, [corrected] and bilateral cerebellum and the vermis as well as increased ALFF in the right anterior cingulated cortex, left sensorimotor cortex, and bilateral brainstem. This resting-state fMRI study suggests that the changed spontaneous neuronal activity of these regions may be implicated in the underlying pathophysiology in children with ADHD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization.

            Resting state functional connectivity MRI (fcMRI) is widely used to investigate brain networks that exhibit correlated fluctuations. While fcMRI does not provide direct measurement of anatomic connectivity, accumulating evidence suggests it is sufficiently constrained by anatomy to allow the architecture of distinct brain systems to be characterized. fcMRI is particularly useful for characterizing large-scale systems that span distributed areas (e.g., polysynaptic cortical pathways, cerebro-cerebellar circuits, cortical-thalamic circuits) and has complementary strengths when contrasted with the other major tool available for human connectomics-high angular resolution diffusion imaging (HARDI). We review what is known about fcMRI and then explore fcMRI data reliability, effects of preprocessing, analysis procedures, and effects of different acquisition parameters across six studies (n = 98) to provide recommendations for optimization. Run length (2-12 min), run structure (1 12-min run or 2 6-min runs), temporal resolution (2.5 or 5.0 s), spatial resolution (2 or 3 mm), and the task (fixation, eyes closed rest, eyes open rest, continuous word-classification) were varied. Results revealed moderate to high test-retest reliability. Run structure, temporal resolution, and spatial resolution minimally influenced fcMRI results while fixation and eyes open rest yielded stronger correlations as contrasted to other task conditions. Commonly used preprocessing steps involving regression of nuisance signals minimized nonspecific (noise) correlations including those associated with respiration. The most surprising finding was that estimates of correlation strengths stabilized with acquisition times as brief as 5 min. The brevity and robustness of fcMRI positions it as a powerful tool for large-scale explorations of genetic influences on brain architecture. We conclude by discussing the strengths and limitations of fcMRI and how it can be combined with HARDI techniques to support the emerging field of human connectomics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resolving emotional conflict: a role for the rostral anterior cingulate cortex in modulating activity in the amygdala.

              Effective mental functioning requires that cognition be protected from emotional conflict due to interference by task-irrelevant emotionally salient stimuli. The neural mechanisms by which the brain detects and resolves emotional conflict are still largely unknown, however. Drawing on the classic Stroop conflict task, we developed a protocol that allowed us to dissociate the generation and monitoring of emotional conflict from its resolution. Using functional magnetic resonance imaging (fMRI), we find that activity in the amygdala and dorsomedial and dorsolateral prefrontal cortices reflects the amount of emotional conflict. By contrast, the resolution of emotional conflict is associated with activation of the rostral anterior cingulate cortex. Activation of the rostral cingulate is predicted by the amount of previous-trial conflict-related neural activity and is accompanied by a simultaneous and correlated reduction of amygdalar activity. These data suggest that emotional conflict is resolved through top-down inhibition of amygdalar activity by the rostral cingulate cortex.
                Bookmark

                Author and article information

                Journal
                Brain Imaging and Behavior
                Brain Imaging and Behavior
                Springer Nature
                1931-7557
                1931-7565
                December 2017
                October 22 2016
                December 2017
                : 11
                : 6
                : 1690-1706
                Article
                10.1007/s11682-016-9601-y
                27771857
                44629651-d462-44a6-a776-50e1d4fb5a45
                © 2017

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article