28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of elevational diversity gradients dates back to the foundation of biogeography. Although elevational patterns of plant and animal diversity have been studied for centuries, such patterns have not been reported for microorganisms and remain poorly understood. Here, in an effort to assess the generality of elevational diversity patterns, we examined soil bacterial and plant diversity along an elevation gradient. To gain insight into the forces that structure these patterns, we adopted a multifaceted approach to incorporate information about the structure, diversity, and spatial turnover of montane communities in a phylogenetic context. We found that observed patterns of plant and bacterial diversity were fundamentally different. While bacterial taxon richness and phylogenetic diversity decreased monotonically from the lowest to highest elevations, plants followed a unimodal pattern, with a peak in richness and phylogenetic diversity at mid-elevations. At all elevations bacterial communities had a tendency to be phylogenetically clustered, containing closely related taxa. In contrast, plant communities did not exhibit a uniform phylogenetic structure across the gradient: they became more overdispersed with increasing elevation, containing distantly related taxa. Finally, a metric of phylogenetic beta-diversity showed that bacterial lineages were not randomly distributed, but rather exhibited significant spatial structure across the gradient, whereas plant lineages did not exhibit a significant phylogenetic signal. Quantifying the influence of sample scale in intertaxonomic comparisons remains a challenge. Nevertheless, our findings suggest that the forces structuring microorganism and macroorganism communities along elevational gradients differ.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Phylogenetic overdispersion in Floridian oak communities.

          Closely related species that occur together in communities and experience similar environmental conditions are likely to share phenotypic traits because of the process of environmental filtering. At the same time, species that are too similar are unlikely to co-occur because of competitive exclusion. In an effort to explain the coexistence of 17 oak species within forest communities in North Central Florida, we examined correlations between the phylogenetic relatedness of oak species, their degree of co-occurrence within communities and niche overlap across environmental gradients, and their similarity in ecophysiological and life-history traits. We show that the oaks are phylogenetically overdispersed because co-occurring species are more distantly related than expected by chance, and oaks within the same clade show less niche overlap than expected. Hence, communities are more likely to include members of both the red oak and the white + live oak clades than only members of one clade. This pattern of phylogenetic overdispersion arises because traits important for habitat specialization show evolutionary convergence. We hypothesize further that certain conserved traits permit coexistence of distantly related congeners. These results provide an explanation for how oak diversity is maintained at the community level in North Central Florida.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale.

            Consideration of the scale at which communities are defined both taxonomically and spatially can reconcile apparently contradictory results on the extent to which plants show phylogenetic niche conservatism. In plant communities in north central Florida, we collected species abundances in 55 0.1-ha plots in several state parks. When communities were defined narrowly to include a single phylogenetic lineage, such as Quercus, Pinus, or Ilex, neighbors tended to be less related than expected (phylogenetic overdispersion) or there was no pattern. If the same communities were defined more broadly, such as when all seed plants were included, neighbors tended to be more related than expected (phylogenetic clustering). These results provide evidence that species interactions among close relatives influence community structure, but they also show that niche conservatism is increasingly evident as communities are defined to include greater phylogenetic diversity. We also found that, as the spatial scale is increased to encompass greater environmental heterogeneity, niche conservatism emerges as the dominant pattern. We then examined patterns of trait evolution in relation to trait similarity within communities for 11 functional traits for a single phylogenetic lineage (Quercus) and for all woody plants. Among the oaks, convergent evolution of traits important for environmental filtering contributes to the observed pattern of phylogenetic overdispersion. At the broader taxonomic scale, traits tend to be conserved, giving rise to phylogenetic clustering. The shift from overdispersion to clustering can be explained by the increasing conservatism of traits at broader phylogenetic scales.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The phylogenetic structure of a neotropical forest tree community.

              Numerous ecological and evolutionary processes are thought to play a role in maintaining the high plant species diversity of tropical forests. An understanding of the phylogenetic structure of an ecological community can provide insights into the relative importance of different processes structuring that community. The objectives of this study were to measure the phylogenetic structure of Neotropical forest tree communities in the Forest Dynamics Plot (FDP) on Barro Colorado Island, Panama, to determine how the phylogenetic structure of tree communities varied among spatial scales and habitats within the FDP, and to study the effects of null-model choice on estimates of community phylogenetic structure. We measured community phylogenetic structure for tree species occurring together in quadrats ranging in size from 10 x 10 m to 100 X 100 m in the FDP. We estimated phylogenetic structure by comparing observed phylogenetic distances among species to the distribution of phylogenetic distances for null communities generated using two different null models. A null model that did not maintain observed species occurrence frequencies tended to find nonrandom community phylogenetic structure, even for random data. Using a null model that maintained observed species frequencies in null communities, the average phylogenetic structure of tree communities in the FDP was close to random at all spatial scales examined, but more quadrats than expected contained species that were phylogenetically clustered or overdispersed, and phylogenetic structure varied among habitats. In young forests and plateau habitats, communities were phylogenetically clustered, meaning that trees were more closely related to their neighbors than expected, while communities in swamp and slope habitats were phylogenetically overdispersed, meaning that trees were more distantly related to their neighbors than expected. Phylogenetic clustering suggests the importance of environmental filtering of phylogenetically conserved traits in young forests and plateau habitats, but the phylogenetic overdispersion observed in other habitats has several possible explanations, including variation in the strength of ecological processes among habitats or the phylogenetic history of niches, traits, and habitat associations. Future studies will need to include information on species traits in order to explain the variation in phylogenetic structure among habitats in tropical forests.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 14 2008
                August 12 2008
                August 11 2008
                August 12 2008
                : 105
                : Supplement 1
                : 11505-11511
                Article
                10.1073/pnas.0801920105
                2556412
                18695215
                447e500b-84a0-4977-b4ef-1b235870f3d0
                © 2008
                History

                Comments

                Comment on this article