3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Systematic Review of Tissue Engineering Scaffold in Tendon Bone Healing in vivo

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Tendon-bone healing is an important factor in determining the success of ligament reconstruction. With the development of biomaterials science, the tissue engineering scaffold plays an extremely important role in tendon-bone healing and bone tissue engineering.

          Materials and Methods: Electronic databases (PubMed, Embase, and the Web of Science) were systematically searched for relevant and qualitative studies published from 1 January 1990 to 31 December 2019. Only original articles that met eligibility criteria and evaluated the use of issue engineering scaffold especially biomaterials in tendon bone healing in vivo were selected for analysis.

          Results: The search strategy identified 506 articles, and 27 studies were included for full review including two human trials and 25 animal studies. Fifteen studies only used biomaterials like PLGA, collage, PCL, PLA, and PET as scaffolds to repair the tendon-bone defect, on this basis, the rest of the 11 studies using biological interventions like cells or cell factors to enhance the healing. The adverse events hardly ever occurred, and the tendon bone healing with tissue engineering scaffold was effective and superior, which could be enhanced by biological interventions.

          Conclusion: Although a number of tissue engineering scaffolds have been developed and applied in tendon bone healing, the researches are mainly focused on animal models which are with limitations in clinical application. Since the efficacy and safety of tissue engineering scaffold has been proved, and can be enhanced by biological interventions, substantial clinical trials remain to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical practice.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          Reliability of the PEDro scale for rating quality of randomized controlled trials.

          Assessment of the quality of randomized controlled trials (RCTs) is common practice in systematic reviews. However, the reliability of data obtained with most quality assessment scales has not been established. This report describes 2 studies designed to investigate the reliability of data obtained with the Physiotherapy Evidence Database (PEDro) scale developed to rate the quality of RCTs evaluating physical therapist interventions. In the first study, 11 raters independently rated 25 RCTs randomly selected from the PEDro database. In the second study, 2 raters rated 120 RCTs randomly selected from the PEDro database, and disagreements were resolved by a third rater; this generated a set of individual rater and consensus ratings. The process was repeated by independent raters to create a second set of individual and consensus ratings. Reliability of ratings of PEDro scale items was calculated using multirater kappas, and reliability of the total (summed) score was calculated using intraclass correlation coefficients (ICC [1,1]). The kappa value for each of the 11 items ranged from.36 to.80 for individual assessors and from.50 to.79 for consensus ratings generated by groups of 2 or 3 raters. The ICC for the total score was.56 (95% confidence interval=.47-.65) for ratings by individuals, and the ICC for consensus ratings was.68 (95% confidence interval=.57-.76). The reliability of ratings of PEDro scale items varied from "fair" to "substantial," and the reliability of the total PEDro score was "fair" to "good."
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Open pore biodegradable matrices formed with gas foaming.

            Engineering tissues utilizing biodegradable polymer matrices is a promising approach to the treatment of a number of diseases. However, processing techniques utilized to fabricate these matrices typically involve organic solvents and/or high temperatures. Here we describe a process for fabricating matrices without the use of organic solvents and/or elevated temperatures. Disks comprised of polymer [e.g., poly (D,L-lactic-co-glycolic acid)] and NaCl particles were compression molded at room temperature and subsequently allowed to equilibrate with high pressure CO2 gas (800 psi). Creation of a thermodynamic instability led to the nucleation and growth of gas pores in the polymer particles, resulting in the expansion of the polymer particles. The polymer particles fused to form a continuous matrix with entrapped salt particles. The NaCl particles subsequently were leached to yield macropores within the polymer matrix. The overall porosity and level of pore connectivity were regulated by the ratio of polymer/salt particles and the size of salt particles. Both the compressive modulus (159+/-130 kPa versus 289+/-25 kPa) and the tensile modulus (334+/-52 kPa versus 1100+/-236 kPa) of the matrices formed with this approach were significantly greater than those formed with a standard solvent casting/particulate leaching process. The utility of these matrices was demonstrated by engineering smooth muscle tissue in vitro with them. This novel process, a combination of high pressure gas foaming and particulate leaching techniques, allows one to fabricate matrices with a well controlled porosity and pore structure. This process avoids the potential negatives associated with the use of high temperatures and/or organic solvents in biomaterials processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair.

              This investigation tested the hypothesis that delivering mesenchymal stem cell-seeded implants to a tendon gap model results in significantly improved repair biomechanics. Cultured, autologous, marrow-derived mesenchymal stem cells were suspended in a collagen gel delivery vehicle; the cell-gel composite was subsequently contracted onto a pretensioned suture. The resulting tissue prosthesis was then implanted into a 1-cm-long gap defect in the rabbit Achilles tendon. Identical procedures were performed on the contralateral tendon, but only the suture material was implanted. The tendon-implant constructs were evaluated 4, 8, and 12 weeks later by biomechanical and histological criteria. Significantly greater load-related structural and material properties were seen at all time intervals in the mesenchymal stem cell-treated tendons than in the contralateral, treated control repairs (p < 0.05), which contained suture alone with natural cell recruitment. The values were typically twice those for the control tissues at each time interval. Load-related material properties for the treated tissues also increased significantly over time (p < 0.05). The treated tissues had a significantly larger cross-sectional area (p < 0.05), and their collagen fibers appeared to be better aligned than those in the matched controls. The results indicate that delivering mesenchymal stem cell-contracted, organized collagen implants to large tendon defects can significantly improve the biomechanics, structure, and probably the function of the tendon after injury.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                15 March 2021
                2021
                : 9
                : 621483
                Affiliations
                [1] 1Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital , Beijing, China
                [2] 2Institute of Sports Medicine of Peking University , Beijing, China
                [3] 3School of Clinical Medicine, Weifang Medical University , Weifang, China
                [4] 4Qingdao University , Qingdao, China
                [5] 5Department of Sports Medicine, The Affiliated Hospital of Qingdao University , Qingdao, China
                Author notes

                Edited by: Bin Li, Soochow University, China

                Reviewed by: Hong-Bin Lu, Central South University, China; Xin Zhao, Hong Kong Polytechnic University, Hong Kong

                *Correspondence: Jiakuo Yu yujiakuo@ 123456126.com

                This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                †These authors have contributed equally to this work

                Article
                10.3389/fbioe.2021.621483
                8005599
                33791283
                447f392d-9f76-4e33-a480-19a69115ff52
                Copyright © 2021 Mao, Fan, Wang, Huang, Guan, Sun, Xu, Yang, Chen, Jiang and Yu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 October 2020
                : 03 February 2021
                Page count
                Figures: 1, Tables: 2, Equations: 0, References: 83, Pages: 18, Words: 12365
                Funding
                Funded by: Peking University Health Science Center 10.13039/501100017003
                Funded by: Peking University Third Hospital 10.13039/501100009399
                Categories
                Bioengineering and Biotechnology
                Systematic Review

                bone tissue engineering,scaffold,biomaterials,tendon bone healing,review

                Comments

                Comment on this article