14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neuronal Effects of Listening to Entrainment Music Versus Preferred Music in Patients With Chronic Cancer Pain as Measured via EEG and LORETA Imaging

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previous studies examining EEG and LORETA in patients with chronic pain discovered an overactivation of high theta (6–9 Hz) and low beta (12–16 Hz) power in central regions. MEG studies with healthy subjects correlating evoked nociception ratings and source localization described delta and gamma changes according to two music interventions. Using similar music conditions with chronic pain patients, we examined EEG in response to two different music interventions for pain. To study this process in-depth we conducted a mixed-methods case study approach, based on three clinical cases. Effectiveness of personalized music therapy improvisations (entrainment music – EM) versus preferred music on chronic pain was examined with 16 participants. Three patients were randomly selected for follow-up EEG sessions three months post-intervention, where they listened to recordings of the music from the interventions provided during the research. To test the difference of EM versus preferred music, recordings were presented in a block design: silence, their own composed EM (depicting both “pain” and “healing”), preferred (commercially available) music, and a non-participant’s EM as a control. Participants rated their pain before and after the EEG on a 1–10 scale. We conducted a detailed single case analysis to compare all conditions, as well as a group comparison of entrainment-healing condition versus preferred music condition. Power spectrum and according LORETA distributions focused on expected changes in delta, theta, beta, and gamma frequencies, particularly in sensory-motor and central regions. Intentional moment-by-moment attention on the sounds/music rather than on pain and decreased awareness of pain was experienced from one participant. Corresponding EEG analysis showed accompanying power changes in sensory-motor regions and LORETA projection pointed to insula-related changes during entrainment-pain music. LORETA also indicated involvement of visual-spatial, motor, and language/music improvisation processing in response to his personalized EM which may reflect active recollection of creating the EM. Group-wide analysis showed common brain responses to personalized entrainment-healing music in theta and low beta range in right pre- and post-central gyrus. We observed somatosensory changes consistent with processing pain during entrainment-healing music that were not seen during preferred music. These results may depict top–down neural processes associated with active coping for pain.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          The precuneus: a review of its functional anatomy and behavioural correlates.

          Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How do you feel? Interoception: the sense of the physiological condition of the body.

            A. Craig (2002)
            As humans, we perceive feelings from our bodies that relate our state of well-being, our energy and stress levels, our mood and disposition. How do we have these feelings? What neural processes do they represent? Recent functional anatomical work has detailed an afferent neural system in primates and in humans that represents all aspects of the physiological condition of the physical body. This system constitutes a representation of 'the material me', and might provide a foundation for subjective feelings, emotion and self-awareness.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain.

              This paper presents a new method for localizing the electric activity in the brain based on multichannel surface EEG recordings. In contrast to the models presented up to now the new method does not assume a limited number of dipolar point sources nor a distribution on a given known surface, but directly computes a current distribution throughout the full brain volume. In order to find a unique solution for the 3-dimensional distribution among the infinite set of different possible solutions, the method assumes that neighboring neurons are simultaneously and synchronously activated. The basic assumption rests on evidence from single cell recordings in the brain that demonstrates strong synchronization of adjacent neurons. In view of this physiological consideration the computational task is to select the smoothest of all possible 3-dimensional current distributions, a task that is a common procedure in generalized signal processing. The result is a true 3-dimensional tomography with the characteristic that localization is preserved with a certain amount of dispersion, i.e., it has a relatively low spatial resolution. The new method, which we call Low Resolution Electromagnetic Tomography (LORETA) is illustrated with two different sets of evoked potential data, the first showing the tomography of the P100 component to checkerboard stimulation of the left, right, upper and lower hemiretina, and the second showing the results for the auditory N100 component and the two cognitive components CNV and P300. A direct comparison of the tomography results with those obtained from fitting one and two dipoles illustrates that the new method provides physiologically meaningful results while dipolar solutions fail in many situations. In the case of the cognitive components, the method offers new hypotheses on the location of higher cognitive functions in the brain.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                25 February 2021
                2021
                : 12
                : 588788
                Affiliations
                [1] 1Department of Music, Rowan University , Glassboro, NJ, United States
                [2] 2Cambridge Institute for Music Therapy Research, Anglia Ruskin University , Cambridge, United Kingdom
                [3] 3Josef Ressel Centre for Personalised Music Therapy, IMC University of Applied Sciences Krems , Krems an der Donau, Austria
                [4] 4Department of Pharmacy Practice, School of Pharmacy, Temple University , Philadelphia, PA, United States
                [5] 5Department of Pharmaceutical Sciences, School of Pharmacy, Temple University , Philadelphia, PA, United States
                [6] 6College of Pharmacy, University of Arizona , Tuscon, AZ, United States
                [7] 7South Woods State Prison, Rutgers University Behavioral Health Care , Bridgeton, NJ, United States
                [8] 8Department of Music Education and Therapy, Boyer College of Music and Dance, Temple University , Philadelphia, PA, United States
                Author notes

                Edited by: Felicity Anne Baker, The University of Melbourne, Australia

                Reviewed by: Janeen Bower, The University of Melbourne, Australia; Susanne Metzner, University of Augsburg, Germany

                *Correspondence: Andrea McGraw Hunt, hunta@ 123456rowan.edu

                Deceased

                This article was submitted to Psychology for Clinical Settings, a section of the journal Frontiers in Psychology

                Article
                10.3389/fpsyg.2021.588788
                7947245
                4488f503-93dc-4a46-9723-31ecce5c6bb8
                Copyright © 2021 Hunt, Fachner, Clark-Vetri, Raffa, Rupnow-Kidd, Maidhof and Dileo.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 July 2020
                : 28 January 2021
                Page count
                Figures: 7, Tables: 6, Equations: 0, References: 77, Pages: 19, Words: 0
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                music therapy,eeg,loreta (low resolution electromagnetic tomography),case study,chronic pain,cancer,pain

                Comments

                Comment on this article