23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Preventing High Fat Diet-induced Obesity and Improving Insulin Sensitivity through Neuregulin 4 Gene Transfer

      research-article
      1 , 1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuregulin 4 (NRG4), an epidermal growth factor-like signaling molecule, plays an important role in cell-to-cell communication during tissue development. Its function to regulate energy metabolism has recently been reported. This current study was designed to assess the preventive and therapeutic effects of NRG4 overexpression on high fat diet (HFD)-induced obesity. Using the hydrodynamic gene transfer method, we demonstrate that Nrg4 gene transfer in mice suppressed the development of diet-induced obesity, but did not affect pre-existing adiposity and body weight in obese mice. Nrg4 gene transfer curbed HFD-induced hepatic steatosis by inhibiting lipogenesis and PPARγ-mediated lipid storage. Concurrently, overexpression of NRG4 reduced chronic inflammation in both preventive and treatment studies, evidenced by lower mRNA levels of macrophage marker genes including F4/80, Cd68, Cd11b, Cd11c, and macrophage chemokine Mcp1, resulting in improved insulin sensitivity. Collectively, these results demonstrate that overexpression of the Nrg4 gene by hydrodynamic gene delivery prevents HFD-induced weight gain and fatty liver, alleviates obesity-induced chronic inflammation and insulin resistance, and supports the health benefits of NRG4 in managing obesity and obesity-associated metabolic disorders.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuating hepatic lipogenesis

          Brown fat activates uncoupled respiration to defend against cold and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that Neuregulin 4 (Nrg4), a member of the EGF family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat, and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3/ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR/SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat-enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and non-alcoholic fatty liver disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The organization, promoter analysis, and expression of the human PPARgamma gene.

            PPARgamma is a member of the PPAR subfamily of nuclear receptors. In this work, the structure of the human PPARgamma cDNA and gene was determined, and its promoters and tissue-specific expression were functionally characterized. Similar to the mouse, two PPAR isoforms, PPARgamma1 and PPARgamma2, were detected in man. The relative expression of human PPARgamma was studied by a newly developed and sensitive reverse transcriptase-competitive polymerase chain reaction method, which allowed us to distinguish between PPARgamma1 and gamma2 mRNA. In all tissues analyzed, PPARgamma2 was much less abundant than PPARgamma1. Adipose tissue and large intestine have the highest levels of PPARgamma mRNA; kidney, liver, and small intestine have intermediate levels; whereas PPARgamma is barely detectable in muscle. This high level expression of PPARgamma in colon warrants further study in view of the well established role of fatty acid and arachidonic acid derivatives in colonic disease. Similarly as mouse PPARgammas, the human PPARgammas are activated by thiazolidinediones and prostaglandin J and bind with high affinity to a PPRE. The human PPARgamma gene has nine exons and extends over more than 100 kilobases of genomic DNA. Alternate transcription start sites and alternate splicing generate the PPARgamma1 and PPARgamma2 mRNAs, which differ at their 5'-ends. PPARgamma1 is encoded by eight exons, and PPARgamma2 is encoded by seven exons. The 5'-untranslated sequence of PPARgamma1 is comprised of exons A1 and A2, whereas that of PPARgamma2 plus the additional PPARgamma2-specific N-terminal amino acids are encoded by exon B, located between exons A2 and A1. The remaining six exons, termed 1 to 6, are common to the PPARgamma1 and gamma2. Knowledge of the gene structure will allow screening for PPARgamma mutations in humans with metabolic disorders, whereas knowledge of its expression pattern and factors regulating its expression could be of major importance in understanding its biology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice

              Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissue depots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a “brite” transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with “browning,” as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed in brown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                17 May 2016
                2016
                : 6
                : 26242
                Affiliations
                [1 ]Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy , Athens, Georgia, United States of America
                Author notes
                Article
                srep26242
                10.1038/srep26242
                4869101
                27184920
                4494f0f2-3c8b-4b5b-933f-0471d0eb209a
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 January 2016
                : 29 April 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article