20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combined effects of hyperglycemic conditions and HIV-1 Nef: a potential model for induced HIV neuropathogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperglycemic conditions associated with diabetes mellitus (DM) or with the use of antiretroviral therapy may increase the risk of central nervous system (CNS) disorders in HIV-1 infected patients. In support of this hypothesis, we investigated the combined effects of hyperglycemic conditions and HIV-1 accessory protein Nef on the CNS using both in vitro and in vivo models. Astrocytes, the most abundant glial cell type required for normal synaptic transmission and other functions were selected for our in vitro study. The results show that in vitro hyperglycemic conditions enhance the expression of proinflammatory cytokines including caspase-3, complement factor 3 (C3), and the production of total nitrate and 8-iso-PGF2 α as reactive oxygen species (ROS) in human astrocytes leading to cell death in a dose-dependent manner. Delivery of purified recombinant HIV-1 Nef protein, or Nef expressed via HIV-1-based vectors in astrocytes showed similar results. The expression of Nef protein delivered via HIV-1 vectors in combination with hyperglycemia further augmented the production of ROS, C3, activation of caspase-3, modulation of filamentous protein (F-protein), depolarization of the mitochondria, and loss of astrocytes. To further verify the effects of hyperglycemia and HIV-1 Nef protein on CNS individually or in combination, in vivo studies were performed in streptozotocin (STZ) induced diabetic mice, by injecting HIV-1 Nef expressing viral particles into the sub-cortical region of the brain. Our in vivo results were similar to in vitro findings indicating an enhanced production of caspases-3, ROS (lipid oxidation and total nitrate), and C3 in the brain tissues of these animals. Interestingly, the delivery of HIV-1 Nef protein alone caused similar damage to CNS as augmented by hyperglycemia conditions. Taken together, the data suggests that HIV-1 infected individuals with hyperglycemia could potentially be at a higher risk of developing CNS related complications.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector.

          A retroviral vector system based on the human immunodeficiency virus (HIV) was developed that, in contrast to a murine leukemia virus-based counterpart, transduced heterologous sequences into HeLa cells and rat fibroblasts blocked in the cell cycle, as well as into human primary macrophages. Additionally, the HIV vector could mediate stable in vivo gene transfer into terminally differentiated neurons. The ability of HIV-based viral vectors to deliver genes in vivo into nondividing cells could increase the applicability of retroviral vectors in human gene therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas.

            A number of murine T-cell hybridomas undergo apoptosis within a few hours of activation by specific antigens, mitogens, antibodies against the T-cell antigen receptor, or a combination of phorbol ester and calcium ionophore. This phenomenon has been extensively studied as a model for clonal deletion in the immune system, in which potentially autoreactive T cells eliminate themselves by apoptosis after activation, either in the thymus or in the periphery. Here we show that the Fas/CD95 receptor, which can transduce a potent apoptotic signal when ligand, is rapidly expressed following activation of T-cell hybridomas, as is its functional, membrane-bound ligand. Interference with the ensuing Fas/Fas-ligand interaction inhibits activation-induced apoptosis. Because T-cell receptor ligation can induce apoptosis in a single T hybridoma cell, we suggest that the Fas/Fas-ligand interaction can induce cell death in a cell-autonomous manner.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Elevated CSF prostaglandin E2 levels in patients with probable AD.

              To determine CSF eicosanoid concentrations and brain cyclo-oxygenase activity in AD patients and age-matched control subjects. Nonsteroidal anti-inflammatory drugs may benefit AD patients by inhibiting cyclo-oxygenases and thereby reducing prostaglandin (PG) production or oxidant stress in the CNS. CSF eicosanoid and F2-isoprostane (IsoP) levels were determined in seven probable AD patients and seven age-matched control subjects. Cyclo-oxygenase activity was determined in microsomes prepared from the hippocampus of 10 definite AD patients and 8 age-matched control subjects. All measurements were made using gas chromatography/mass spectrometry. CSF concentrations of prostaglandin (PG) E2 were increased fivefold (p < 0.01) and 6-keto-PGF1alpha was decreased fourfold (p < 0.01) in probable AD patients. There was no change in total CSF eicosanoid concentration in probable AD patients. CSF F2-IsoP, a quantitative marker of lipid peroxidation in vivo, was increased in probable AD patients (p < 0.05). Cyclo-oxygenase activity in the hippocampus from definite AD patients was not different from age-matched control subjects. These data suggest that cyclo-oxygenase activity may not contribute significantly to CNS oxidative damage in AD. Increased CSF PGE2 concentration in probable AD patients suggest that cyclo-oxygenase inhibitors may benefit AD patients by limiting PG production.
                Bookmark

                Author and article information

                Journal
                Virol J
                Virology Journal
                BioMed Central
                1743-422X
                2009
                30 October 2009
                : 6
                : 183
                Affiliations
                [1 ]The Dorrance H. Hamilton Laboratories, Division of Infectious Diseases and Environmental Medicine, PA 19107, USA
                [2 ]Bioscience Technologies - Biotechnology, Thomas Jefferson University, Philadelphia, PA 19107, USA
                [3 ]Department of Biochemistry, Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, 46300 Pakistan
                [4 ]NanoBio Diagnostics, West Chester, PA 19382, USA
                [5 ]Department of Neurology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
                [6 ]Tibotec Inc. 1020 Stony Hill Road, Suite 300, Yardley, PA 19067, USA
                Article
                1743-422X-6-183
                10.1186/1743-422X-6-183
                2778648
                19878567
                44a14f41-0901-49c8-a2c4-af7a41b22939
                Copyright ©2009 Acheampong et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 May 2009
                : 30 October 2009
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article