11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Forecast Customization System (FOCUS): A Multimodel Ensemble-Based Seasonal Climate Forecasting Tool for the Homogeneous Climate Zones of Myanmar

      1 , 1 , 2 , 1
      Advances in Meteorology
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A Multi-Model Ensemble (MME) based seasonal rainfall forecast customization tool called FOCUS was developed for Myanmar in order to provide improved seasonal rainfall forecast to the country. The tool was developed using hindcast data from 7 Global Climate Models (GCMs) and observed rainfall data from 49 meteorological surface observatories for the period of 1982 to 2011 from the Department of Meteorology and Hydrology. Based on the homogeneity in terms of the rainfall received annually, the country was divided into six climatological zones. Three different operational MME techniques, namely, (a) arithmetic mean (AM-MME), (b) weighted average (WA-MME), and (c) supervised principal component regression (PCR-MME), were used and built-in to the tool developed. For this study, all 7 GCMs were initialized with forecast data of May month to predict the rainfall during June to September (JJAS) period, which is the predominant rainfall season for Myanmar. The predictability of raw GCMs, bias-corrected GCMs, and the MMEs was evaluated using RMSE, correlation coefficients, and standard deviations. The probabilistic forecasts for the terciles were also evaluated using the relative operating characteristics (ROC) scores, to quantify the uncertainty in the GCMs. The results suggested that MME forecasts have shown improved performance (RMSE = 1.29), compared to the raw individual models (ECMWF, which is comparatively better among the selected models) with RMSE = 4.4 and bias-corrected RMSE = 4.3, over Myanmar. Specifically, WA-MME (CC = 0.64) and PCR-MME (CC = 0.68) methods have shown significant improvement in the high rainfall (delta) zone compared with WA-MME (CC = 0.57) and PCR-MME (CC = 0.56) techniques for the southern zone. The PCR method suggests higher predictability skill for the upper tercile (ROC = 0.78) and lower tercile categories (ROC = 0.85) for the delta region and is less skillful over lower rainfall zones like dry zones with ROC = 0.6 and 0.63 for upper and lower terciles, respectively. The model is thus suggested to perform relatively well over the higher rainfall (Wet) zones compared to the lower (Dry) zone during the JJAS period.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: not found
          • Article: not found

          Summarizing multiple aspects of model performance in a single diagram

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            DEVELOPMENT OF A EUROPEAN MULTIMODEL ENSEMBLE SYSTEM FOR SEASONAL-TO-INTERANNUAL PREDICTION (DEMETER)

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The North American Multimodel Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal Prediction

                Bookmark

                Author and article information

                Journal
                Advances in Meteorology
                Advances in Meteorology
                Hindawi Limited
                1687-9309
                1687-9317
                December 18 2019
                December 18 2019
                : 2019
                : 1-15
                Affiliations
                [1 ]Disaster Preparedness Mitigation and Management, Asian Institute of Technology, Khlong Nueng, Pathum Thani, Thailand
                [2 ]Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
                Article
                10.1155/2019/4957127
                44b49145-d2b7-4745-850f-ba68ffb5e54a
                © 2019

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article