24
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Revision of the genus Attaphila (Blattodea: Blaberoidea), myrmecophiles living in the mushroom gardens of leaf-cutting ants

      , , ,
      Arthropod Systematics & Phylogeny
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genus Attaphila, comprising minute myrmecophilous cockroaches, is revised, including now six previously known (A. aptera, A. bergi, A. flava, A. fungicola, A. schuppi, A. sexdentis) and three new species (A. multisetosa sp. nov. Bohn and Klass, A. paucisetosa sp. nov. Bohn and Klass, A. sinuosocarinata sp. nov. Bohn and Klass). All species are described or redescribed and depicted with their main characteristics; determination keys allow the identification of males and females. Especially the male characters allow a distribution to two species-groups with differing host specificity: bergi-group associated with Acromyrmex (and possibly Amoimyrmex) ants, fungicola-group associated with Atta ants; the former appears paraphyletic, the latter monophyletic. The genus Attaphila is characterised emphasising its unique features: (1) insertion of antennae at the bottom of a wide funnel-shaped deepening; (2) antenna with the possibility of a rectangular bending between scapus and pedicellus (associated with a distal excavation of the scapus) and (3) with an unusual shape and low number of antennomeres; (4) femora of legs with a ventral groove allowing a close spacing of femur and tibia during a strong flexion; (5) a complex and unusual shape of the laterosternal shelf area of the female genitalia (lack of shelf, presence of a pair of complicated tubular invaginations); and (6) lateral parts of abdominal tergite T9 of male ending in a pair of ventromesally directed arms, which contact the lateral margins of the subgenital plate. Functional aspects and the possible biological roles of these features are discussed. Older biological data are summarised and new observations are presented. The position of Attaphila within Blattodea is discussed. Like a recent molecular study, the morphology of the male genitalia places the genus in the Blaberoidea. The molecular result of Attaphila being closest to three particular blattellid genera, however, is conflictual from the morphological perspective.

          Related collections

          Most cited references81

          • Record: found
          • Abstract: not found
          • Article: not found

          Systematics and phylogeny of cockroaches (Dictyoptera: Blattaria)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence

            Understanding the origin and diversification of organisms requires a good phylogenetic estimate of their age and diversification rates. This estimate can be difficult to obtain when samples are limited and fossil records are disputed, as in Dictyoptera. To choose among competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis (~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils attributed to lineages with clear synapomorphies. We find the following topology: (mantises, (other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyoptera—and stem-mantises—would date back to the Late Carboniferous (~ 300 Mya), a result compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however, would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old origin and more recent diversification) suggests a scenario of replacement in carnivory among polyneopterous insects. The most recent common ancestor of (cockroaches + termites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic boundary, which refutes a Triassic origin. We suggest directions in extant and extinct species sampling to sharpen this chronological framework and dictyopteran evolutionary studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dry habitats were crucibles of domestication in the evolution of agriculture in ants

              The evolution of ant agriculture, as practised by the fungus-farming ‘attine’ ants, is thought to have arisen in the wet rainforests of South America about 55–65 Ma. Most subsequent attine agricultural evolution, including the domestication event that produced the ancestor of higher attine cultivars, is likewise hypothesized to have occurred in South American rainforests. The ‘out-of-the-rainforest’ hypothesis, while generally accepted, has never been tested in a phylogenetic context. It also presents a problem for explaining how fungal domestication might have occurred, given that isolation from free-living populations is required. Here, we use phylogenomic data from ultra-conserved element (UCE) loci to reconstruct the evolutionary history of fungus-farming ants, reduce topological uncertainty, and identify the closest non-fungus-growing ant relative. Using the phylogeny we infer the history of attine agricultural systems, habitat preference and biogeography. Our results show that the out-of-the-rainforest hypothesis is correct with regard to the origin of attine ant agriculture; however, contrary to expectation, we find that the transition from lower to higher agriculture is very likely to have occurred in a seasonally dry habitat, inhospitable to the growth of free-living populations of attine fungal cultivars. We suggest that dry habitats favoured the isolation of attine cultivars over the evolutionary time spans necessary for domestication to occur.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Arthropod Systematics & Phylogeny
                ASP
                Pensoft Publishers
                1864-8312
                1863-7221
                July 05 2021
                July 05 2021
                : 79
                : 205-280
                Article
                10.3897/asp.79.e67569
                44cc5ee6-71d0-4d26-98d0-c99f47c1e3f5
                © 2021

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article