11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tissue-type plasminogen activator controls neuronal death by raising surface dynamics of extrasynaptic NMDA receptors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          N-methyl- d-aspartate receptors (NMDARs) are ion channels whose synaptic versus extrasynaptic localization critically influences their functions. This distribution of NMDARs is highly dependent on their lateral diffusion at the cell membrane. Each obligatory subunit of NMDARs (GluN1 and GluN2) contains two extracellular clamshell-like domains with an agonist-binding domain and a distal N-terminal domain (NTD). To date, the roles and dynamics of the NTD of the GluN1 subunit in NMDAR allosteric signaling remain poorly understood. Using single nanoparticle tracking in mouse neurons, we demonstrate that the extracellular neuronal protease tissue-type plasminogen activator (tPA), well known to have a role in the synaptic plasticity and neuronal survival, leads to a selective increase of the surface dynamics and subsequent diffusion of extrasynaptic NMDARs. This process explains the previously reported ability of tPA to promote NMDAR-mediated calcium influx. In parallel, we developed a monoclonal antibody capable of specifically blocking the interaction of tPA with the NTD of the GluN1 subunit of NMDAR. Using this original approach, we demonstrate that the tPA binds the NTD of the GluN1 subunit at a lysine in position 178. Accordingly, when applied to mouse neurons, our selected antibody (named Glunomab) leads to a selective reduction of the tPA-mediated surface dynamics of extrasynaptic NMDARs, subsequent signaling and neurotoxicity, both in vitro and in vivo. Altogether, we demonstrate that the tPA is a ligand of the NTD of the obligatory GluN1 subunit of NMDAR acting as a modulator of their dynamic distribution at the neuronal surface and subsequent signaling.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists.

          N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological processes. Activation of NMDARs requires glutamate and a coagonist whose nature and impact on NMDAR physiology remain elusive. We report that synaptic and extrasynaptic NMDARs are gated by different endogenous coagonists, d-serine and glycine, respectively. The regionalized availability of the coagonists matches the preferential affinity of synaptic NMDARs for d-serine and extrasynaptic NMDARs for glycine. Furthermore, glycine and d-serine inhibit NMDAR surface trafficking in a subunit-dependent manner, which is likely to influence NMDARs subcellular location. Taking advantage of this coagonist segregation, we demonstrate that long-term potentiation and NMDA-induced neurotoxicity rely on synaptic NMDARs only. Conversely, long-term depression requires both synaptic and extrasynaptic receptors. Our observations provide key insights into the operating mode of NMDARs, emphasizing functional distinctions between synaptic and extrasynaptic NMDARs in brain physiology. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Surface mobility of postsynaptic AMPARs tunes synaptic transmission.

            AMPA glutamate receptors (AMPARs) mediate fast excitatory synaptic transmission. Upon fast consecutive synaptic stimulation, transmission can be depressed. Recuperation from fast synaptic depression has been attributed solely to recovery of transmitter release and/or AMPAR desensitization. We show that AMPAR lateral diffusion, observed in both intact hippocampi and cultured neurons, allows fast exchange of desensitized receptors with naïve functional ones within or near the postsynaptic density. Recovery from depression in the tens of millisecond time range can be explained in part by this fast receptor exchange. Preventing AMPAR surface movements through cross-linking, endogenous clustering, or calcium rise all slow recovery from depression. Physiological regulation of postsynaptic receptor mobility affects the fidelity of synaptic transmission by shaping the frequency dependence of synaptic responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling.

              Tissue-plasminogen activator (t-PA) is now available for the treatment of thrombo-embolic stroke but adverse effects have been reported in some patients, particularly hemorrhaging. In contrast, the results of animal studies have indicated that t-PA could increase neuronal damage after focal cerebral ischemia. Here we report for the first time that t-PA potentiates signaling mediated by glutamatergic receptors by modifying the properties of the N-methyl-D-aspartate (NMDA) receptor. When depolarized, cortical neurons release bio-active t-PA that interacts with and cleaves the NR1 subunit of the NMDA receptor. Moreover, the treatment with recombinant t-PA leads to a 37% increase in NMDA-stimulated fura-2 fluorescence, which may reflect an increased NMDA-receptor function. These results were confirmed in vivo by the intrastriatal injection of recombinant-PA, which potentiated the excitotoxic lesions induced by NMDA. These data provide insight into the regulation of NMDA-receptor-mediated signaling and could initiate therapeutic strategies to improve the efficacy of t-PA treatment in man.
                Bookmark

                Author and article information

                Journal
                Cell Death Dis
                Cell Death Dis
                Cell Death & Disease
                Nature Publishing Group
                2041-4889
                November 2016
                10 November 2016
                1 November 2016
                : 7
                : 11
                : e2466
                Affiliations
                [1 ]Inserm, Inserm UMR-S U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, Université Caen-Normandie, GIP Cyceron, Caen, France
                [2 ]Interdisciplinary Institute for Neuroscience, Université de Bordeaux UMR 5297 , Bordeaux, France
                [3 ]CNRS IINS UMR 5297 , Bordeaux, France
                [4 ]SysDiag CNRS/Bio-Rad, UMR3145 , Montpellier, France
                [5 ]PAION Deutschland GmbH , Aachen, Germany
                Author notes
                [* ]INSERM U919 SP2U, Bvd Henri Becquerel , GIP Cyceron, Caen 14074, France. Tel: +33 2 31 47 01 66; Fax: +33 2 31 47 02 22; E-mail: vivien@ 123456cyceron.fr
                [6]

                These authors contributed equally to this work.

                Article
                cddis2016279
                10.1038/cddis.2016.279
                5260909
                27831563
                44cf7950-21b7-4b39-8905-afc2d2c8be45
                Copyright © 2016 The Author(s)

                Cell Death and Disease is an open-access journal published by Nature Publishing Group. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 March 2016
                : 18 July 2016
                : 02 August 2016
                Categories
                Original Article

                Cell biology
                Cell biology

                Comments

                Comment on this article