1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atherosclerosis Vascular Endothelial Secretion Dysfunction and Smooth Muscle Cell Proliferation

      research-article
      , , ,
      Journal of Healthcare Engineering
      Hindawi

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atherosclerosis is a chronic inflammatory disease of the arterial wall and the main cause of cardiovascular disease and cerebrovascular disease. In recent years, the mortality rate of atherosclerotic diseases has become higher and higher. This article aims to study the dysregulation of atherosclerotic vascular endothelial secretion and smooth muscle cell proliferation, and put forward and practice the pathological research of atherosclerotic disease. This article describes in detail atherosclerosis, endothelial dysfunction, and smooth muscle cell proliferation, and studies the causes of atherosclerosis. Research results indicate that atherosclerotic vascular endothelial dysfunction also has a great influence on the proliferation of smooth muscle cells. Many genes and environmental factors can regulate the functions of endothelial cells, vascular smooth muscle cells, and mononuclear macrophages and affect the formation of atherosclerosis. At the same time, diabetes, hypertension, hyperlipidemia, obesity, etc. are the main causes of atherosclerosis. The number of patients with cardiovascular and cerebrovascular diseases dying from atherosclerosis in the country is increasing, and the proportion is close to 30%.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis.

          Dysfunction of the endothelial lining of lesion-prone areas of the arterial vasculature is an important contributor to the pathobiology of atherosclerotic cardiovascular disease. Endothelial cell dysfunction, in its broadest sense, encompasses a constellation of various nonadaptive alterations in functional phenotype, which have important implications for the regulation of hemostasis and thrombosis, local vascular tone and redox balance, and the orchestration of acute and chronic inflammatory reactions within the arterial wall. In this review, we trace the evolution of the concept of endothelial cell dysfunction, focusing on recent insights into the cellular and molecular mechanisms that underlie its pivotal roles in atherosclerotic lesion initiation and progression; explore its relationship to classic, as well as more recently defined, clinical risk factors for atherosclerotic cardiovascular disease; consider current approaches to the clinical assessment of endothelial cell dysfunction; and outline some promising new directions for its early detection and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Senescent intimal foam cells are deleterious at all stages of atherosclerosis.

            Advanced atherosclerotic lesions contain senescent cells, but the role of these cells in atherogenesis remains unclear. Using transgenic and pharmacological approaches to eliminate senescent cells in atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice, we show that these cells are detrimental throughout disease pathogenesis. We find that foamy macrophages with senescence markers accumulate in the subendothelial space at the onset of atherosclerosis, where they drive pathology by increasing expression of key atherogenic and inflammatory cytokines and chemokines. In advanced lesions, senescent cells promote features of plaque instability, including elastic fiber degradation and fibrous cap thinning, by heightening metalloprotease production. Together, these results demonstrate that senescent cells are key drivers of atheroma formation and maturation and suggest that selective clearance of these cells by senolytic agents holds promise for the treatment of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flow-dependent YAP/TAZ activities regulate endothelial phenotypes and atherosclerosis.

              The focal nature of atherosclerotic lesions suggests an important role of local hemodynamic environment. Recent studies have demonstrated significant roles of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) in mediating mechanotransduction and vascular homeostasis. The objective of this study is to investigate the functional role of YAP/TAZ in the flow regulation of atheroprone endothelial phenotypes and the consequential development of atherosclerotic lesions. We found that exposure of cultured endothelial cells (ECs) to the atheroprone disturbed flow resulted in YAP/TAZ activation and translocation into EC nucleus to up-regulate the target genes, including cysteine-rich angiogenic inducer 61 (CYR61), connective tissue growth factor (CTGF), and ankyrin repeat domain 1 (ANKRD1). In contrast, the athero-protective laminar flow suppressed YAP/TAZ activities. En face analysis of mouse arteries demonstrated an increased nuclear localization of YAP/TAZ and elevated levels of the target genes in the endothelium in atheroprone areas compared with athero-protective areas. YAP/TAZ knockdown significantly attenuated the disturbed flow induction of EC proliferative and proinflammatory phenotypes, whereas overexpression of constitutively active YAP was sufficient to promote EC proliferation and inflammation. In addition, treatment with statin, an antiatherosclerotic drug, inhibited YAP/TAZ activities to diminish the disturbed flow-induced proliferation and inflammation. In vivo blockade of YAP/TAZ translation by morpholino oligos significantly reduced endothelial inflammation and the size of atherosclerotic lesions. Our results demonstrate a critical role of the activation of YAP/TAZ by disturbed flow in promoting atheroprone phenotypes and atherosclerotic lesion development. Therefore, inhibition of YAP/TAZ activation is a promising athero-protective therapeutic strategy.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Healthc Eng
                J Healthc Eng
                JHE
                Journal of Healthcare Engineering
                Hindawi
                2040-2295
                2040-2309
                2022
                9 March 2022
                : 2022
                : 9271879
                Affiliations
                Hunan University of Chinese Medicine, Changsha 410000, Hunan, China
                Author notes

                Academic Editor: Nima Jafari Navimipour

                Author information
                https://orcid.org/0000-0002-6037-2514
                Article
                10.1155/2022/9271879
                8926545
                35310191
                44dadde8-165b-42a7-b187-c03fe301ec4d
                Copyright © 2022 Junxi Li et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 December 2021
                : 11 February 2022
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81774032
                Award ID: 82174218
                Funded by: Natural Science Foundation of Hunan Province of China
                Award ID: 2020JJ2024
                Award ID: 2018JJ3391
                Funded by: Education Department of Hunan Province
                Award ID: 19A374
                Funded by: National College Student Innovation and Entrepreneurship Training Program of China
                Award ID: S202110541015
                Award ID: S202010541006
                Funded by: Provincial College Student Innovation and Entrepreneurship Training Program of China
                Award ID: J2020-010
                Categories
                Research Article

                Comments

                Comment on this article