3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Animal Safety, Toxicology, and Pharmacokinetic Studies According to the ICH S9 Guideline for a Novel Fusion Protein tTF-NGR Targeting Procoagulatory Activity into Tumor Vasculature: Are Results Predictive for Humans?

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          Non-clinical safety, toxicology, and pharmacokinetic studies according to ICH guidelines with a new fusion protein tTF-NGR consisting of human truncated tissue factor (TF) and a small targeting peptide are reported. Results are compared with those of a phase I clinical dose escalation trial with tTF-NGR in cancer patients. Most of the non-clinical results were not predictive for human tolerability. Thus, animal sparing alternative pathways for translation of such a bio-pharmaceutical compound from preclinical studies on efficacy and mode of action into the clinic are discussed.

          Abstract

          Background: CD-13 targeted tissue factor tTF-NGR is a fusion protein selectively inducing occlusion of tumor vasculature with resulting tumor infarction. Mechanistic and pharmacodynamic studies have shown broad anti-tumor therapeutic effects in xenograft models. Methods: After successful Good Manufacturing Practice (GMP) production and before translation into clinical phase I, ICH S9 (S6) guideline-conforming animal safety, toxicology, and pharmacokinetic (PK) studies were requested by the federal drug authority in accordance with European and US regulations. Results: These studies were performed in mice, rats, guinea pigs, and beagle dogs. Results of the recently completed clinical phase I trial in end-stage cancer patients showed only limited predictive value of these non-clinical studies for patient tolerability and safety in phase I. Conclusions: Although this experience cannot be generalized, alternative pathways with seamless clinical phase 0 microdosing—phase I dose escalation studies are endorsed for anticancer drug development and translation into the clinic.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticles that communicate in vivo to amplify tumour targeting.

          Nanomedicines have enormous potential to improve the precision of cancer therapy, yet our ability to efficiently home these materials to regions of disease in vivo remains very limited. Inspired by the ability of communication to improve targeting in biological systems, such as inflammatory-cell recruitment to sites of disease, we construct systems where synthetic biological and nanotechnological components communicate to amplify disease targeting in vivo. These systems are composed of 'signalling' modules (nanoparticles or engineered proteins) that target tumours and then locally activate the coagulation cascade to broadcast tumour location to clot-targeted 'receiving' nanoparticles in circulation that carry a diagnostic or therapeutic cargo, thereby amplifying their delivery. We show that communicating nanoparticle systems can be composed of multiple types of signalling and receiving modules, can transmit information through multiple molecular pathways in coagulation, can operate autonomously and can target over 40 times higher doses of chemotherapeutics to tumours than non-communicating controls. © 2011 Macmillan Publishers Limited. All rights reserved
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The beginning of the end for conventional RECIST — novel therapies require novel imaging approaches

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: experimental results and first-in-man experience.

              We induced thrombosis of blood vessels in solid tumors in mice by a fusion protein consisting of the extracellular domain of tissue factor (truncated tissue factor, tTF) and the peptide GNGRAHA, targeting aminopeptidase N (CD13) and the integrin alpha(v)beta(3) (CD51/CD61) on tumor vascular endothelium. The designed fusion protein tTF-NGR retained its thrombogenic activity as demonstrated by coagulation assays. In vivo studies in mice bearing established human adenocarcinoma (A549), melanoma (M21), and fibrosarcoma (HT1080) revealed that systemic administration of tTF-NGR induced partial or complete thrombotic occlusion of tumor vessels as shown by histologic analysis. tTF-NGR, but not untargeted tTF, induced significant tumor growth retardation or regression in all 3 types of solid tumors. Thrombosis induction in tumor vessels by tTF-NGR was also shown by contrast enhanced magnetic resonance imaging (MRI). In the human fibrosarcoma xenograft model, MRI revealed a significant reduction of tumor perfusion by administration of tTF-NGR. Clinical first-in-man application of low dosages of this targeted coagulation factor revealed good tolerability and decreased tumor perfusion as measured by MRI. Targeted thrombosis in the tumor vasculature induced by tTF-NGR may be a promising strategy for the treatment of cancer.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                26 November 2020
                December 2020
                : 12
                : 12
                : 3536
                Affiliations
                Author notes
                [* ]Correspondence: berdel@ 123456uni-muenster.de ; Tel.: +49-251-835-2672
                Article
                cancers-12-03536
                10.3390/cancers12123536
                7759859
                33256235
                44e85901-a716-4a50-bbc3-325170d1fd9f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 October 2020
                : 24 November 2020
                Categories
                Article

                non-clinical safety and toxicology studies,vascular targeting,fusion protein ttf-ngr,regulatory requirements for translation of anti-cancer drugs into human trials,seamless phase 0 micro-dosing and phase i trial concept

                Comments

                Comment on this article