25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sources of Fine Particulate Matter and Risk of Preterm Birth in Connecticut, 2000–2006: A Longitudinal Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Previous studies have examined fine particulate matter (≤ 2.5 μm; PM 2.5) and preterm birth, but there is a dearth of longitudinal studies on this topic and a paucity of studies that have investigated specific sources of this exposure.

          Objectives: Our aim was to assess whether anthropogenic sources are associated with risk of preterm birth, comparing successive pregnancies to the same woman.

          Methods: Birth certificates were used to select women who had vaginal singleton live births at least twice in Connecticut during 2000–2006 ( n = 23,123 women, n = 48,208 births). We procured 4,085 daily samples of PM 2.5 on Teflon filters from the Connecticut Department of Environmental Protection for six cities in Connecticut. Filters were analyzed for chemical composition, and Positive Matrix Factorization was used to determine contributions of PM 2.5 sources. Risk estimates were calculated with conditional logistic regression, matching pregnancies to the same women.

          Results: Odds ratios of preterm birth per interquartile range increase in whole pregnancy exposure to dust, motor vehicle emissions, oil combustion, and regional sulfur PM 2.5 sources were 1.01 (95% CI: 0.93, 1.09), 1.01 (95% CI: 0.92, 1.10), 1.00 (95% CI: 0.89, 1.12), and 1.09 (95% CI: 0.97, 1.22), respectively.

          Conclusion: This was the first study of PM 2.5 sources and preterm birth, and the first matched analysis, that better addresses individual-level confounding potentially inherent in all past studies. There was insufficient evidence to suggest that sources were statistically significantly associated with preterm birth. However, elevated central estimates and previously observed associations with mass concentration motivate the need for further research. Future studies would benefit from high source exposure settings and longitudinal study designs, such as that adopted in this study.

          Citation: Pereira G, Bell ML, Lee HJ, Koutrakis P, Belanger K. 2014. Sources of fine particulate matter and risk of preterm birth in Connecticut, 2000–2006: a longitudinal study. Environ Health Perspect 122:1117–1122;  http://dx.doi.org/10.1289/ehp.1307741

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Ambient air pollution, birth weight and preterm birth: a systematic review and meta-analysis.

          Low birth weight and preterm birth have a substantial public health impact. Studies examining their association with outdoor air pollution were identified using searches of bibliographic databases and reference lists of relevant papers. Pooled estimates of effect were calculated, heterogeneity was quantified, meta-regression was conducted and publication bias was examined. Sixty-two studies met the inclusion criteria. The majority of studies reported reduced birth weight and increased odds of low birth weight in relation to exposure to carbon monoxide (CO), nitrogen dioxide (NO(2)) and particulate matter less than 10 and 2.5 microns (PM(10) and PM(2.5)). Effect estimates based on entire pregnancy exposure were generally largest. Pooled estimates of decrease in birth weight ranged from 11.4 g (95% confidence interval -6.9-29.7) per 1 ppm CO to 28.1g (11.5-44.8) per 20 ppb NO(2), and pooled odds ratios for low birth weight ranged from 1.05 (0.99-1.12) per 10 μg/m(3) PM(2.5) to 1.10 (1.05-1.15) per 20 μg/m(3) PM(10) based on entire pregnancy exposure. Fewer effect estimates were available for preterm birth and results were mixed. Pooled odds ratios based on 3rd trimester exposures were generally most precise, ranging from 1.04 (1.02-1.06) per 1 ppm CO to 1.06 (1.03-1.11) per 20 μg/m(3) PM(10). Results were less consistent for ozone and sulfur dioxide for all outcomes. Heterogeneity between studies varied widely between pollutants and outcomes, and meta-regression suggested that heterogeneity could be partially explained by methodological differences between studies. While there is a large evidence base which is indicative of associations between CO, NO(2), PM and pregnancy outcome, variation in effects by exposure period and sources of heterogeneity between studies should be further explored. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Spatial and Temporal Variation in PM2.5 Chemical Composition in the United States for Health Effects Studies

            Background Although numerous studies have demonstrated links between particulate matter (PM) and adverse health effects, the chemical components of the PM mixture that cause injury are unknown. Objectives This work characterizes spatial and temporal variability of PM2.5 (PM with aerodynamic diameter < 2.5 μm) components in the United States; our objective is to identify components for assessment in epidemiologic studies. Methods We constructed a database of 52 PM2.5 component concentrations for 187 U.S. counties for 2000–2005. First, we describe the challenges inherent to analysis of a national PM2.5 chemical composition database. Second, we identify components that contribute substantially to and/or co-vary with PM2.5 total mass. Third, we characterize the seasonal and regional variability of targeted components. Results Strong seasonal and geographic variations in PM2.5 chemical composition are identified. Only seven of the 52 components contributed ≥ 1% to total mass for yearly or seasonal averages [ammonium (NH4 +), elemental carbon (EC), organic carbon matter (OCM), nitrate (NO3 −), silicon, sodium (Na+), and sulfate (SO4 2−)]. Strongest correlations with PM2.5 total mass were with NH4 + (yearly), OCM (especially winter), NO3 − (winter), and SO4 2− (yearly, spring, autumn, and summer), with particularly strong correlations for NH4 + and SO4 2− in summer. Components that co-varied with PM2.5 total mass, based on daily detrended data, were NH4 +, SO4 2− , OCM, NO3 2−, bromine, and EC. Conclusions The subset of identified PM2.5 components should be investigated further to determine whether their daily variation is associated with daily variation of health indicators, and whether their seasonal and regional patterns can explain the seasonal and regional heterogeneity in PM10 (PM with aerodynamic diameter < 10 μm) and PM2.5 health risks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Cohort Study of Traffic-Related Air Pollution Impacts on Birth Outcomes

              Background Evidence suggests that air pollution exposure adversely affects pregnancy outcomes. Few studies have examined individual-level intraurban exposure contrasts. Objectives We evaluated the impacts of air pollution on small for gestational age (SGA) birth weight, low full-term birth weight (LBW), and preterm birth using spatiotemporal exposure metrics. Methods With linked administrative data, we identified 70,249 singleton births (1999–2002) with complete covariate data (sex, ethnicity, parity, birth month and year, income, education) and maternal residential history in Vancouver, British Columbia, Canada. We estimated residential exposures by month of pregnancy using nearest and inverse-distance weighting (IDW) of study area monitors [carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, and particulate matter < 2.5 (PM2.5) or < 10 (PM10) μm in aerodynamic diameter], temporally adjusted land use regression (LUR) models (NO, NO2, PM2.5, black carbon), and proximity to major roads. Using logistic regression, we estimated the risk of mean (entire pregnancy, first and last month of pregnancy, first and last 3 months) air pollution concentrations on SGA (< 10th percentile), term LBW (< 2,500 g), and preterm birth. Results Residence within 50 m of highways was associated with a 26% increase in SGA [95% confidence interval (CI), 1.07–1.49] and an 11% (95% CI, 1.01–1.23) increase in LBW. Exposure to all air pollutants except O3 was associated with SGA, with similar odds ratios (ORs) for LUR and monitoring estimates (e.g., LUR: OR = 1.02; 95% CI, 1.00–1.04; IDW: OR = 1.05; 95% CI, 1.03–1.08 per 10-μg/m3 increase in NO). For preterm births, associations were observed with PM2.5 for births < 37 weeks gestation (and for other pollutants at < 30 weeks). No consistent patterns suggested exposure windows of greater relevance. Conclusion Associations between traffic-related air pollution and birth outcomes were observed in a population-based cohort with relatively low ambient air pollution exposure.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                NLM-Export
                0091-6765
                1552-9924
                23 May 2014
                October 2014
                : 122
                : 10
                : 1117-1122
                Affiliations
                [1 ]Center for Perinatal Pediatric and Environmental Epidemiology, School of Medicine, Yale University, New Haven, Connecticut, USA
                [2 ]School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
                [3 ]Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
                Author notes
                Address correspondence to G. Pereira, Center for Perinatal Pediatric and Environmental Epidemiology, Level 6, One Church Street, New Haven, CT 06511 USA. Telephone: (203) 764-9767. E-mail: gavin.pereira@ 123456yale.edu
                Article
                ehp.1307741
                10.1289/ehp.1307741
                4181926
                24911470
                44f4f10a-3709-4208-ab62-b331b7733824

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 17 October 2013
                : 22 May 2014
                : 23 May 2014
                : 01 October 2014
                Categories
                Children's Health

                Public health
                Public health

                Comments

                Comment on this article