9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Locomotion in non-avian dinosaurs: integrating data from hindlimb kinematics, in vivo strains, and bone morphology

      Paleobiology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analyses of non-avian dinosaur locomotion have been hampered by the lack of an appropriate locomotor analog among extant taxa. Birds, though members of the clade Dinosauria, have undergone significant modifications in hindlimb osteology and musculature. These changes have resulted in a uniquely developed system of limb kinematics (involving a more horizontal femoral posture and knee-dominated limb motion), which precludes the direct use of extant birds as models for non-avian dinosaur locomotion. Analyses of locomotor data from extant birds and mammals suggest a causal link between general hindlimb kinematics, bone strains, and limb bone morphology among these taxa. A model is proposed that relates the amount of torsional loading in femora to bone orientation, such that torsion is maximal in horizontal femora and minimal in vertical femora. Since bone safety factors are lower for torsional shear strains than for longitudinal axial strains, an increase in torsion can potentially affect bone morphology dramatically over evolutionary time. Interpreting the nearly identical limb bone dimensions and limb element proportions of non-avian dinosaurs and mammals in the light of this relationship supports the prediction of similar vertical femoral postures and hip-driven limb kinematics in these two groups.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Outgroup Analysis and Parsimony

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energetics of running: a new perspective.

            The amount of energy used to run a mile is nearly the same whether it is run at top speed or at a leisurely pace (although it is used more rapidly at the higher speed). This puzzling independence of energy cost and speed is found generally among running animals, although, on a per gram basis, cost is much higher for smaller animals. Running involves little work against the environment; work is done by muscles and tendons to lift and accelerate the body and limbs. Some of the work is recovered from muscle-tendon springs without metabolic cost and work rate does not parallel metabolic rate with either speed or size. Regardless of the amount of work muscles do, they must be activated and develop force to support the weight of the body. Load-carrying experiments have shown that the cost of supporting an extra newton of load is the same as the weight-specific cost of running. Size differences in cost are proportional to stride frequency at equivalent speeds, suggesting that the time available for developing force is important in determining cost. We report a simple inverse relationship between the rate of energy used for running and the time the foot applies force to the ground during each stride. These results support the hypothesis that it is primarily the cost of supporting the animal's weight and the time course of generating this force that determines the cost of running.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Scaling body support in mammals: limb posture and muscle mechanics.

              The scaling of bone and muscle geometry in mammals suggests that peak stresses (ratio of force to cross-sectional area) acting in these two support elements increase with increasing body size. Observations of stresses acting in the limb bones of different sized mammals during strenuous activity, however, indicate that peak bone stress is independent of size (maintaining a safety factor of between 2 and 4). It appears that similar peak bone stresses and muscle stresses in large and small mammals are achieved primarily by a size-dependent change in locomotor limb posture: small animals run with crouched postures, whereas larger species run more upright. By adopting an upright posture, large animals align their limbs more closely with the ground reaction force, substantially reducing the forces that their muscles must exert (proportional to body mass) and hence, the forces that their bones must resist, to counteract joint moments. This change in limb posture to maintain locomotor stresses within safe limits, however, likely limits the maneuverability and accelerative capability of large animals.
                Bookmark

                Author and article information

                Journal
                applab
                Paleobiology
                Paleobiology
                Cambridge University Press (CUP)
                0094-8373
                1938-5331
                1998
                February 2016
                : 24
                : 04
                : 450-469
                Article
                10.1017/S0094837300020108
                4509f560-bcd2-4383-bdfe-49df85e1345a
                © 1998
                History

                Comments

                Comment on this article