9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Underground Azelaic Acid–Conferred Resistance to Pseudomonas syringae in Arabidopsis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Induced systemic resistance by beneficial microbes.

          Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systemic acquired resistance: turning local infection into global defense.

            Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Priming for enhanced defense.

              When plants recognize potential opponents, invading pathogens, wound signals, or abiotic stress, they often switch to a primed state of enhanced defense. However, defense priming can also be induced by some natural or synthetic chemicals. In the primed state, plants respond to biotic and abiotic stress with faster and stronger activation of defense, and this is often linked to immunity and abiotic stress tolerance. This review covers recent advances in disclosing molecular mechanisms of priming. These include elevated levels of pattern-recognition receptors and dormant signaling enzymes, transcription factor HsfB1 activity, and alterations in chromatin state. They also comprise the identification of aspartyl-tRNA synthetase as a receptor of the priming activator β-aminobutyric acid. The article also illustrates the inheritance of priming, exemplifies the role of recently identified priming activators azelaic and pipecolic acid, elaborates on the similarity to defense priming in mammals, and discusses the potential of defense priming in agriculture.
                Bookmark

                Author and article information

                Journal
                Molecular Plant-Microbe Interactions
                MPMI
                Scientific Societies
                0894-0282
                1943-7706
                January 2019
                January 2019
                : 32
                : 1
                : 86-94
                Affiliations
                [1 ]Department of Molecular Genetics and Cell Biology, The University of Chicago, 929 East 57th Street GCIS 524W, Chicago, IL 60637, U.S.A.;
                [2 ]Department of Molecular Genetics, Dong-A University, 37 Nakdong-Daero 550beon-gil, Saha-gu, Busan 49315, Korea; and
                [3 ]Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, U.S.A.
                Article
                10.1094/MPMI-07-18-0185-R
                30156481
                45122132-fe8f-43e6-8f0f-ca4675e33663
                © 2019
                History

                Comments

                Comment on this article