+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of cortical source generators based on electroencephalography during tonic pain

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          The aim of the present study was to characterize the cortical source generators evoked by experimental tonic pain.


          Electroencephalography (EEG) was recorded on two separate days during rest and with immersion of the hand in ice water for 2 minutes (cold pressor test). Exact low-resolution brain electromagnetic tomography source localization was performed in 31 healthy volunteers to characterize the cortical source generators.


          Reliability was high in all eight frequency bands during rest and cold pressor conditions (intraclass coefficients =0.47–0.83 in the cingulate and insula). Tonic pain increased cortical activities in the delta (1–4 Hz), theta (4–8 Hz), beta1 (12–18 Hz), beta2 (18–24 Hz), beta3 (24–32 Hz), and gamma (32–60 Hz) bands (all P<0.011) in widespread areas mainly in the limbic system, whereas decreased cortical activities were found in cingulate and pre- and postcentral gyri in the alpha2 (10–12 Hz) band ( P=0.007). The pain intensity was correlated with cingulate activity in the beta2, beta3, and gamma bands (all P<0.04).


          Source localization of EEG is a reliable method to estimate cortical source generators. Activities in different brain regions, mainly in the limbic system, showed fluctuations in various frequency bands. Cingulate changes were correlated with pain intensity.


          This method might add information to the objective assessment of the cortical pain response in future experimental pain studies.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing interactions in the brain with exact low-resolution electromagnetic tomography.

          Scalp electric potentials (electroencephalogram; EEG) are contingent to the impressed current density unleashed by cortical pyramidal neurons undergoing post-synaptic processes. EEG neuroimaging consists of estimating the cortical current density from scalp recordings. We report a solution to this inverse problem that attains exact localization: exact low-resolution brain electromagnetic tomography (eLORETA). This non-invasive method yields high time-resolution intracranial signals that can be used for assessing functional dynamic connectivity in the brain, quantified by coherence and phase synchronization. However, these measures are non-physiologically high because of volume conduction and low spatial resolution. We present a new method to solve this problem by decomposing them into instantaneous and lagged components, with the lagged part having almost pure physiological origin.
            • Record: found
            • Abstract: found
            • Article: not found

            Localization of pain-related brain activation: a meta-analysis of neuroimaging data.

             Emma Duerden (corresponding) ,  Marie-Claire Albanese (2011)
            A meta-analysis of 140 neuroimaging studies was performed using the activation-likelihood-estimate (ALE) method to explore the location and extent of activation in the brain in response to noxious stimuli in healthy volunteers. The first analysis involved the creation of a likelihood map illustrating brain activation common across studies using noxious stimuli. The left thalamus, right anterior cingulate cortex (ACC), bilateral anterior insulae, and left dorsal posterior insula had the highest likelihood of being activated. The second analysis contrasted noxious cold with noxious heat stimulation and revealed higher likelihood of activation to noxious cold in the subgenual ACC and the amygdala. The third analysis assessed the implications of using either a warm stimulus or a resting baseline as the control condition to reveal activation attributed to noxious heat. Comparing noxious heat to warm stimulation led to peak ALE values that were restricted to cortical regions with known nociceptive input. The fourth analysis tested for a hemispheric dominance in pain processing and showed the importance of the right hemisphere, with the strongest ALE peaks and clusters found in the right insula and ACC. The fifth analysis compared noxious muscle with cutaneous stimuli and the former type was more likely to evoke activation in the posterior and anterior cingulate cortices, precuneus, dorsolateral prefrontal cortex, and cerebellum. In general, results indicate that some brain regions such as the thalamus, insula and ACC have a significant likelihood of activation regardless of the type of noxious stimuli, while other brain regions show a stimulus-specific likelihood of being activated. Copyright © 2011 Wiley Periodicals, Inc.
              • Record: found
              • Abstract: found
              • Article: not found

              fMRI of thermal pain: effects of stimulus laterality and attention.

              Brain activity was studied by fMRI in 18 healthy subjects during stimulation of the thenar eminence of the hand with either warm (non-painful, 40 degrees C) or hot (painful, 46-49 degrees C) stimuli using a contact thermode. Experiments were performed on the right and left hand independently and with two attentional contexts: subjects either attended to pain or attended to a visual global motion discrimination task (to distract them from pain). Group analysis demonstrated that attended warm stimulation of the right hand did not produce any significantly activated clusters. Painful thermal stimulation of either hand elicited significant activity over a large network of brain regions, including insula, inferior frontal gyrus, cingulate gyrus, secondary somatosensory cortex, cerebellum, and medial frontal gyrus (corrected P < 0.05). Insula activity was distributed along its anterior-posterior axis and depended on the hand stimulated and attentional context. In particular, activity within the posterior insula was contralateral to the site of stimulation, tested using regions of interest (ROI) analysis: significant side x site interaction (P = 0.001). With attention diverted from the painful stimulus bilateral anterior insula activity moved posteriorly to midinsula and decreased in extent (ROI analysis: significant main effect of attention (P = 0.03)). The role of the insula in thermosensation and attention is discussed.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                07 June 2017
                : 10
                : 1401-1409
                [1 ]Mech-Sense, Department of Radiology, Aalborg University Hospital
                [2 ]Department of Clinical Medicine, Aalborg University
                [3 ]Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
                Author notes
                Correspondence: Tine Maria Hansen, Department of Radiology, Mech-Sense, Aalborg University Hospital, Hobrovej 18-22, 9000 Aalborg, Denmark, Tel +45 97 66 52 54, Fax +45 97 66 52 57, Email tine.hansen@ 123456rn.dk
                © 2017 Hansen et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Anesthesiology & Pain management

                eloreta, eeg, cingulate cortex, source localization, tonic pain


                Comment on this article