8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Regulating Mechanism of Chrysophanol on Protein Level of CaM-CaMKIV to Protect PC12 Cells Against Aβ 25-35-Induced Damage

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the neuroprotective effect of chrysophanol (CHR) on PC12 treated with Aβ 25-35, and the involved mechanism.

          Methods

          After the establishment of an AD cell model induced by Aβ 25-35, the cell survival rate was detected by MTT, cell apoptosis was assayed by Hoechst 33342 staining, mRNA expressions of calmodulin (CaM), calcium/calmodulin-dependent protein kinase kinase (CaMKK), calcium/calmodulin-dependent protein kinase IV (CaMKIV) and tau (MAPT; commonly known as tau) were determined by qRT-PCR, and protein levels of CaM, CaMKK, CaMKIV, phospho-CaMKIV (p-CaMKIV), tau and phospho-tau (p-tau) were detected by Western blot analysis.

          Results

          When pretreated with CHR before exposure to Aβ 25-35, PC12 cells showed that increased cell viability and reduced apoptosis. The qRT-PCR results indicated that the deposition of Aβ 25-35 triggers a decrease in levels of CaM, CaMKK, CaMKIV, and tau in PC12 cells. In addition, Western blot results also suggested that Aβ 25-35 decreases the protein expression of CaM, CaMKK, CaMKIV, p-CaMKIV, and the ratio of p-tau to tau in PC12 cells. However, the above effects were significantly alleviated after the treatment of CHR.

          Conclusion

          CHR plays a neuroprotective role in AD though decreasing the protein level of CaM-CaMKK-CaMKIV and the expression of p-tau downstream.

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function.

          Highly enriched in brain tissue and present throughout the body, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is central to the coordination and execution of Ca(2+) signal transduction. The substrates phosphorylated by CaMKII are implicated in homeostatic regulation of the cell, as well as in activity-dependent changes in neuronal function that appear to underlie complex cognitive and behavioral responses, including learning and memory. The architecture of CaMKII holoenzymes is unique in nature. The kinase functional domains (12 per holoenzyme) are attached by stalklike appendages to a gear-shaped core, grouped into two clusters of six. Each subunit contains a catalytic, an autoregulatory, and an association domain. Ca(2+)/calmodulin (CaM) binding disinhibits the autoregulatory domain, allowing autophosphorylation and complex changes in the enzyme's sensitivity to Ca(2+)/CaM, including the generation of Ca(2+)/CaM-independent activity, CaM trapping, and CaM capping. These processes confer a type of molecular memory to the autoregulation and activity of CaMKII. Its function is intimately shaped by its multimeric structure, autoregulation, isozymic type, and subcellular localization; these features and processes are discussed as they relate to known and potential cellular functions of this multifunctional protein kinase.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            2014 Update of the Alzheimer's Disease Neuroimaging Initiative: A review of papers published since its inception.

            The Alzheimer's Disease Neuroimaging Initiative (ADNI) is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD). The initial study, ADNI-1, enrolled 400 subjects with early mild cognitive impairment (MCI), 200 with early AD, and 200 cognitively normal elderly controls. ADNI-1 was extended by a 2-year Grand Opportunities grant in 2009 and by a competitive renewal, ADNI-2, which enrolled an additional 550 participants and will run until 2015. This article reviews all papers published since the inception of the initiative and summarizes the results to the end of 2013. The major accomplishments of ADNI have been as follows: (1) the development of standardized methods for clinical tests, magnetic resonance imaging (MRI), positron emission tomography (PET), and cerebrospinal fluid (CSF) biomarkers in a multicenter setting; (2) elucidation of the patterns and rates of change of imaging and CSF biomarker measurements in control subjects, MCI patients, and AD patients. CSF biomarkers are largely consistent with disease trajectories predicted by β-amyloid cascade (Hardy, J Alzheimer's Dis 2006;9(Suppl 3):151-3) and tau-mediated neurodegeneration hypotheses for AD, whereas brain atrophy and hypometabolism levels show predicted patterns but exhibit differing rates of change depending on region and disease severity; (3) the assessment of alternative methods of diagnostic categorization. Currently, the best classifiers select and combine optimum features from multiple modalities, including MRI, [(18)F]-fluorodeoxyglucose-PET, amyloid PET, CSF biomarkers, and clinical tests; (4) the development of blood biomarkers for AD as potentially noninvasive and low-cost alternatives to CSF biomarkers for AD diagnosis and the assessment of α-syn as an additional biomarker; (5) the development of methods for the early detection of AD. CSF biomarkers, β-amyloid 42 and tau, as well as amyloid PET may reflect the earliest steps in AD pathology in mildly symptomatic or even nonsymptomatic subjects and are leading candidates for the detection of AD in its preclinical stages; (6) the improvement of clinical trial efficiency through the identification of subjects most likely to undergo imminent future clinical decline and the use of more sensitive outcome measures to reduce sample sizes. Multimodal methods incorporating APOE status and longitudinal MRI proved most highly predictive of future decline. Refinements of clinical tests used as outcome measures such as clinical dementia rating-sum of boxes further reduced sample sizes; (7) the pioneering of genome-wide association studies that leverage quantitative imaging and biomarker phenotypes, including longitudinal data, to confirm recently identified loci, CR1, CLU, and PICALM and to identify novel AD risk loci; (8) worldwide impact through the establishment of ADNI-like programs in Japan, Australia, Argentina, Taiwan, China, Korea, Europe, and Italy; (9) understanding the biology and pathobiology of normal aging, MCI, and AD through integration of ADNI biomarker and clinical data to stimulate research that will resolve controversies about competing hypotheses on the etiopathogenesis of AD, thereby advancing efforts to find disease-modifying drugs for AD; and (10) the establishment of infrastructure to allow sharing of all raw and processed data without embargo to interested scientific investigators throughout the world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery.

              Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                DDDT
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                13 July 2020
                2020
                : 14
                : 2715-2723
                Affiliations
                [1 ]School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine , Hefei 230012, People’s Republic of China
                [2 ]Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine , Hefei 230012, People’s Republic of China
                [3 ]Anhui Province Key Laboratory of Chinese Medicinal Formula , Hefei 230012, People’s Republic of China
                Author notes
                Correspondence: Yan-Yan Liu; Biao Cai Email liuyan2027@163.com; caibiao@ahtcm.edu.cn
                [*]

                These authors contributed equally to this work

                Author information
                https://orcid.org/http://orcid.org/0000-0002-9171-1726
                https://orcid.org/http://orcid.org/0000-0002-3375-0073
                Article
                245128
                10.2147/DDDT.S245128
                7381772
                4523278d-31e0-4de0-85e3-acda21f57738
                © 2020 Ye et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 09 January 2020
                : 30 June 2020
                Page count
                Figures: 6, Tables: 1, References: 32, Pages: 9
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                chrysophanol,alzheimer’s disease,cam-camkk-camkiv,p-tau

                Comments

                Comment on this article