59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epidemiological Trends of Dengue Disease in Colombia (2000-2011): A Systematic Review

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A systematic literature review was conducted to describe the epidemiology of dengue disease in Colombia. Searches of published literature in epidemiological studies of dengue disease encompassing the terms “dengue”, “epidemiology,” and “Colombia” were conducted. Studies in English or Spanish published between 1 January 2000 and 23 February 2012 were included. The searches identified 225 relevant citations, 30 of which fulfilled the inclusion criteria defined in the review protocol. The epidemiology of dengue disease in Colombia was characterized by a stable “baseline” annual number of dengue fever cases, with major outbreaks in 2001–2003 and 2010. The geographical spread of dengue disease cases showed a steady increase, with most of the country affected by the 2010 outbreak. The majority of dengue disease recorded during the review period was among those <15 years of age. Gaps identified in epidemiological knowledge regarding dengue disease in Colombia may provide several avenues for future research, namely studies of asymptomatic dengue virus infection, primary versus secondary infections, and under-reporting of the disease. Improved understanding of the factors that determine disease expression and enable improvement in disease control and management is also important.

          Author Summary

          Dengue disease is caused by one of four serologically related, but antigenically distinct dengue virus serotypes (DENV-1, -2, -3 or -4). It is the most prevalent arthropod-borne viral disease, with a global distribution. Resource-poor countries are particularly vulnerable to transmission of dengue disease and it is present throughout the Americas. Colombia is one of the countries in the Americas most affected by epidemics of dengue disease, which is a significant public health concern. We conducted this systematic literature review to consolidate knowledge regarding the epidemiology of dengue disease in Colombia using well-defined methods to search and identify relevant research, according to predetermined inclusion criteria. The findings reveal that despite vector control measures and constant improvement in diagnosis and clinical management of dengue disease cases by health services, there has been no success in the effective control of the disease. This systematic review identifies important epidemiological characteristics of dengue disease in Colombia, as well as identifying several avenues for future research.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiology of dengue: past, present and future prospects

          Dengue is currently regarded globally as the most important mosquito-borne viral disease. A history of symptoms compatible with dengue can be traced back to the Chin Dynasty of 265–420 AD. The virus and its vectors have now become widely distributed throughout tropical and subtropical regions of the world, particularly over the last half-century. Significant geographic expansion has been coupled with rapid increases in incident cases, epidemics, and hyperendemicity, leading to the more severe forms of dengue. Transmission of dengue is now present in every World Health Organization (WHO) region of the world and more than 125 countries are known to be dengue endemic. The true impact of dengue globally is difficult to ascertain due to factors such as inadequate disease surveillance, misdiagnosis, and low levels of reporting. Currently available data likely grossly underestimates the social, economic, and disease burden. Estimates of the global incidence of dengue infections per year have ranged between 50 million and 200 million; however, recent estimates using cartographic approaches suggest this number is closer to almost 400 million. The expansion of dengue is expected to increase due to factors such as the modern dynamics of climate change, globalization, travel, trade, socioeconomics, settlement and also viral evolution. No vaccine or specific antiviral therapy currently exists to address the growing threat of dengue. Prompt case detection and appropriate clinical management can reduce the mortality from severe dengue. Effective vector control is the mainstay of dengue prevention and control. Surveillance and improved reporting of dengue cases is also essential to gauge the true global situation as indicated in the objectives of the WHO Global Strategy for Dengue Prevention and Control, 2012–2020. More accurate data will inform the prioritization of research, health policy, and financial resources toward reducing this poorly controlled disease. The objective of this paper is to review historical and current epidemiology of dengue worldwide and, additionally, reflect on some potential reasons for expansion of dengue into the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiological Trends of Dengue Disease in Brazil (2000–2010): A Systematic Literature Search and Analysis

            Introduction Dengue disease is an escalating public health problem [1]. Approximately 2·5 billion people live in over 100 endemic countries, predominantly in tropical areas where dengue viruses (DENV) can be transmitted [2]. DENV are arboviruses that are transmitted to humans by infected Aedes aegypti (Linnaeus) mosquitoes – the primary vector. Infection with any one of four DENV serotypes (DENV-1, -2, -3, or -4) can produce a spectrum of illness ranging from a mild, non-specific febrile syndrome, to classic dengue fever (DF), or severe disease forms, such as dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), that can be fatal. The World Health Organization (WHO) estimates that >50 million dengue infections and >20,000 dengue-related deaths occur annually [1], [3], [4]. A recent disease distribution model has estimated there to be 390 (95% credible interval 284–528) million dengue infections per year, of which 96 million are apparent (i.e., cases manifest any level of clinical or sub-clinical severity) [3]. During 2001–2007, >4 million cases were notified in the Americas, and during 1995–2002, >75% of these cases were reported from Brazil [5], [6]. Ae. aegypti was eradicated from Brazil as a result of a Pan American Health Organization (PAHO) programme to control the spread of yellow fever. Additionally, DENV transmission was also suppressed in the Americas during the eradication programme. South American countries became re-infested with Ae. aegypti after the programme was discontinued and this, combined with the co-circulation of multiple DENV serotypes, led to the spread of dengue disease across the continent [5], [7]–[9]. In 1982, there was a dengue outbreak in a small city in the northern region of Brazil (Boa Vista/Roraima), which was quickly brought under control and the virus did not spread [10]. In 1986, the re-emergence of DENV-1 in Rio de Janeiro state [11] resulted in over 60,000 reported cases in 1987 and the subsequent spread of DENV increased national public health concerns [12]–[14]. Since the late 1980's the incidence of dengue disease continued to increase; 204,000 cases were reported nationally in 1999 [15], [16]. By 2000, DENV transmission was reported in 22/27 Brazilian states, and the mosquito vector was present in all states [17]. Much of Brazil is affected by a tropical wet and dry climate with high temperatures, high humidity and seasonal variations in rainfall; climate patterns that can provide appropriate conditions for breeding and survival of the Ae. aegypti mosquito. The country is divided into five regions (North, Northeast, Central-West, Southeast, and South) comprising 26 states and the federal district containing the capital city, Brasília. In 2000 there were nearly 170 million inhabitants of Brazil, increasing to more than 190 million in 2010 [18], the majority of whom live in the large cities of the Southeast and Northeast regions [19]. The National System for Surveillance and Control of Diseases (SNVS) of Brazil, operates as part of the national health system (Sistema Único de Saúde, or SUS). All reported cases from public health services or private health providers are included in the notification database (Sistema de Informacoes de Agravos de Notificacao [SINAN]), which is openly accessible via the internet [20]. Until 2011, the SNVS adopted the case definitions outlined in WHO guidelines [21], [22]. In 1997, the WHO categorized symptomatic dengue disease as: undifferentiated fever, DF and, DHF [21]. DHF was further classified into four severity grades, with grades III and IV being defined as DSS. However, difficulties in applying the criteria for DHF [23], led the WHO to suggest a new classification based on levels of severity: non-severe dengue disease with or without warning signs, and severe dengue disease [22]. During 2000–2011, both surveillance and hospitalization reporting systems in Brazil used DF and DHF; the surveillance system used an additional classification designated ‘DF with complications’ (DFC) [24]. Importantly, the articles included in this literature analysis that were based on secondary data used these surveillance sources. Our objectives of this literature search and analysis were to describe the epidemiology of dengue disease (national and regional incidence [by age and sex], seroprevalence and serotype distribution and other relevant epidemiological data) in Brazil during 2000–2011, and to identify gaps in epidemiological knowledge requiring further research. Methods A literature review group, including authors of this contribution, developed a literature survey and analysis protocol based on the preferred reporting items of systematic reviews and meta-analyses (PRISMA) guidelines [25]. Our protocol prescribed well-defined methods to search, identify, and select relevant research, and set predetermined inclusion criteria. The protocol was registered on PROSPERO, an international database of prospectively registered systematic reviews in health and social care managed by the Centre for Reviews and Dissemination, University of York (CRD42011001826: http://www.crd.york.ac.uk/prospero/display_record.asp?ID=CRD42011001826; protocol: http://www.crd.york.ac.uk/PROSPEROFILES/1826_PROTOCOL_20130401.pdf) on 9 December 2011. Search strategy and selection criteria Between 31 July 2011 and 4 August 2011, we searched databases of published literature (Table 1) for epidemiological studies of dengue disease in Brazil. Search strategies for each database were described with reference to the expanded Medical Subject Headings (MeSH) thesaurus, encompassing the terms ‘dengue’, ‘epidemiology’, and ‘Brazil’. Google and Yahoo searches (limited to the first 50 results) were used to identify national and international reports and guidelines, congress abstracts, and grey literature (e.g., Ministry of Health data, lay publications). 10.1371/journal.pntd.0002520.t001 Table 1 Databases searched for citations relating to dengue disease epidemiology in Brazil. Database Website United States National Library of Medicine and the National Institutes of Health Medical Database http://www.ncbi.nlm.nih.gov/pubmed/ Excerpta Medica Database (EMBASE) MedLine Scientific Electronic Library Online (SciELO) – a consolidated electronic publication project that makes available the full text articles from more than 290 scientific journals from Brazil, Chile, Cuba, Spain, Venezuela and other Latin American countries http://www.scielo.org/php/index.php?lang=en Virtual Health Library (VHL), an initiative by Brazil-based BIREME (the Latin American and Caribbean Center on Health Sciences Information) that facilitates searches of the Latin American and Caribbean Health Sciences Database (LILACS) and the PAHO Headquarters Library database and other regional health resources http://regional.bvsalud.org/php/index.php?lang=en WHO Library database (WHOLIS) http://dosei.who.int/uhtbin/cgisirsi/3foptRgmQT/7440030/38/1/X/BLASTOFF Brazilian Ministry of Education: Theses Bank (CAPES) http://capesdw.capes.gov.br/capesdw/ To reduce selection bias, peer-reviewed contributions in English, Portuguese, or Spanish published between 1 January 2000 and 4 August 2011 were included; no limits by sex, age, ethnicity of study participants, or by study type were imposed. Single-case reports and articles only reporting data prior to 1 January 2000 were excluded. Unpublished reports were included if they were identified in one of the sources listed above. Data from grey materials supplemented that from peer-reviewed literature. Publications not identified in the target databases by the search strategy (e.g., locally published papers) and unpublished data sources meeting the inclusion criteria (e.g., theses, Ministry of Health data) were included if recommended by members of the literature review group. Editorials and data from literature reviews of previously published peer-reviewed studies were excluded. Duplicates and articles not satisfying the inclusion criteria were removed following review of the titles and abstracts. A further selection was made based on review of the full text from the first selection of references. Included publications were summarised using a data extraction instrument developed as a series of spreadsheets. Due to the expected heterogeneity of eligible studies in terms of selection, and number and classification of cases, a meta-analysis was not conducted. For the purposes of the analysis we defined national epidemics as those years with an incidence/100,000 above the 75th percentile for the period. A trend analysis was conducted on the national incidence and case number data. Results and Discussion We identified 714 relevant citations, 51 of which met the inclusion criteria and were entered into the data extraction instrument (Figure 1; Table S1). 10.1371/journal.pntd.0002520.g001 Figure 1 Result of literature search and evaluation of identified studies according to the preferred reporting items of systematic reviews and meta-analyses (PRISMA). All references identified in the on-line database searches were assigned a unique identification number. Following the removal of duplicates and articles that did not satisfy the inclusion criteria from review of the titles and abstracts, the full papers of the first selection of references were retrieved either electronically or in paper form. A further selection was made based on review of the full text of the articles. National epidemiology During the period 2000–2010, the incidence of dengue disease in Brazil varied substantially, reaching a peak in 2010 of >1 million cases (538/100,000 inhabitants) and the lowest value was approximately 72,000 cases in 2004 (63.2/100,000 inhabitants) (Table 2, Figure 2A–C, Table S2) [6], [15], [16], [26]–[31]. Despite the yearly variations and cyclical epidemics, trend analysis of the incidence of dengue in Brazil in the period 2000–2010 showed an overall increase in incidence over time that was not statistically significant (β = 12·9/cases per 100,000, p = 0·49). Analysis of the number of cases of dengue disease over the review period shows a growth trend that was not statistically significant (β = 47·984 cases/year, p = 0·25). Nevertheless, the trend analysis suggests a worsening of the problem over time. 10.1371/journal.pntd.0002520.g002 Figure 2 Trends in epidemiology of dengue disease Brazil, 2000–2010. (A) Reported number and average incidence per 100,000 population of probable* cases of dengue disease. (B) Reported number of cases of dengue fever with complications (DFC) and dengue haemorrhagic fever (DHF). (C) Reported number of dengue disease related hospitalizations (DFC+DHF) and deaths due to DFC and DHF. (D) Number of Ae. aegypti-infested municipalities. (E). Average incidence of dengue disease per 100,000 population, by region. The epidemiology of dengue disease in Brazil during the review period suggests that incidence and disease severity increased over the decade, although the situation is complicated by national epidemics in 2002, 2008 and 2010. The incidence of dengue disease over the review period reflects the wide distribution of Ae. aegypti nationally. In most regions the dengue disease incidence followed national trends. (Adapted from Teixeira 2009 [15] and Siqueira 2010 [26]; additional data supplied by Teixeira MG and Siqueira JB, 2012). 10.1371/journal.pntd.0002520.t002 Table 2 Incidence of dengue disease in Brazil: Summary of national dengue disease incidence data and case numbers and DHF case numbers extracted from source documents. Year Parameter Range Source of data 2000 Dengue disease (n) 138,388–231,000 6, 16, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 92.3–150 15*, 28–30 DHF (n) 40–888 6, 16, 27, 29 2001 Dengue disease (n) 381,718–413,000 6, 16, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 225–254 15*, 28–30 DHF (n) 630–682 6, 16, 27, 29 2002 Dengue disease (n) 684,527–794,219 6, 16, 26, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 335.3–470 15*, 26, 28–30 DHF (n) 2608–2714 16, 26, 27, 29 2003 Dengue disease (n) 280529–342000 16, 26, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 195–200 15*, 29 DHF (n) 650–913 16, 26, 27, 29 2004 Dengue disease (n) 71,847–113,000 16, 26, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 75 15* DHF (n) 81–159 16, 26, 27 2005 Dengue disease (n) 134,298–204,000 16, 26, 27, 31 Dengue disease (Incidence per 100,000 inhabitants) 150 15* DHF (n) 463–1395 16, 26, 27 2006 Dengue disease (n) 252725–347000 16, 26, 27 Dengue disease (Incidence per 100,000 inhabitants) 200 15* DHF (n) 642–910 16, 26, 27 2007 Dengue disease (n) 501666–560000 16, 26, 27 Dengue disease (Incidence per 100,000 inhabitants) 300 15* DHF (n) 1541–1907 16, 26, 27 2008 Dengue disease (n) 637,663–806,036 16, 26, 27 Dengue disease (Incidence per 100,000 inhabitants) 120–336.3 15*, 26 DHF (n) 647–4502 16, 26, 27 2009 Dengue disease (n) 407,000–411,500 16, 26 Dengue disease (Incidence per 100,000 population) 205,5–214,9 15* DHF (n) 2679 26 2010 Dengue disease (n) 1,027,100 26 Dengue disease (Incidence per 100,000 inhabitants) 538.4 26 DHF (n) 3807 26 Empty cells indicate data not reported in source documents. * Dengue disease incidence data from Teixeira 2009 [15] were estimated from Figure 2. Dengue fever incidence rates (per 100,000 inhabitants) according to geographic regions and year of occurrence. Brazil, 1986–2007. There were three national epidemics (years with incidence above the 75th percentile for the period [279.95]) in 2002, 2008 and 2010. In 2002 there were 684,527 to 794,219 probable cases of DF, in 2008, 637,663 to 806,036 cases [16], [26], [27], and in 2010 there were over 1 million reported cases (Table 2; Figure 2A) [26]. A trough occurred in 2004 (71,847 to 113,000 cases) [16], [26], [27], [31], representing 18,000) is striking when compared with data from the previous decade: during the 1990s 94,000 hospitalizations in 2010 (Figure 2C) [26]. The incidence of dengue-related hospitalization was 31·6/100,000 population during the 2002 national epidemic, approximately 40·8/100,000 during the 2008 national epidemic, and 49·7/100,000 during the 2010 national epidemic [26]. These increases in hospitalization rates during epidemic years might suggest an increase in the severity of dengue disease in Brazil, although an increased awareness during epidemics and a lower threshold for hospitalization might also account for these increases. The number of dengue-related deaths followed the same patterns as the other epidemiological indices of dengue disease. In 2010, of 13,909 cases classified as DFC and 3807 classified as DHF, there were 370 and 308 fatal cases, respectively. The overall number of DHF- or DFC-related deaths was 678 compared with only 19 in 2004 (Figure 2C) [26]. A seasonal pattern of dengue disease was observed in those studies with available seasonal case distribution data. The highest incidences occurred during January–June [34]–[38], corresponding to the period of highest rainfall and humidity, providing suitable conditions for Ae. aegypti breeding and survival. The study by Goncalves Neto et al. [35] showed that 83·3% of dengue disease cases occurred during the rainy season and demonstrated a positive Pearson correlation with the amount of rainfall (r = 0·84) and relative humidity (r = 0·76) and a negative correlation with temperature (r = −0·78). Regional epidemiology We found published regional data for part of the study period from four of the five Brazilian regions [6], [28], [34], [35], [39]–[51]. No published data were recovered for the North region. The available data show that incidence rates varied greatly throughout the country (data not shown; Table S3). In a study of 146 Brazilian cities in October 2006, incidence rates (per 100,000 population) in the 61 cities that reported >500 dengue disease cases ranged between 24·70 (Sao Paulo) and 6222·71 (Campo Grande) [52]. By the end of 2006, 25 of the 27 states had reported local dengue epidemics [15]. The geographic distribution of the Ae. aegypti vector has widened over the 11-year review period, involving an increasing number of municipalities (Figure 2D) and this has resulted in a broader regional distribution of dengue disease. In most regions the dengue disease incidence followed national trends (Figure 2E). In the early years of the survey, the Southeast and Northeast regions were most affected by DENV infections, whereas from 2009 more cases were reported from studies within the Central-West region. Incidence rates reported in the South region were consistently lower than in other regions. The distribution of reported cases of dengue disease during the 2010 national epidemic was different from that in the 2002 and 2008 national epidemics with high attack rates observed over larger areas of Brazil [26]. These regional variations in dengue disease incidence are unsurprising given the geographically diverse nature of Brazil with its large variations in climate and population density. Demographic patterns of dengue disease in Brazil A change in the age distribution of dengue disease over the survey period was evident from the available data. Young adults were most affected by DF and DHF during 2000–2007 and 2000–2005, respectively (i.e., DHF was coincident with the highest incidence of DF). However, in 2006 the incidence of DHF among children aged 53% of DHF cases occurred in children 40 years; all cases (n = 18) are virologically confirmed and from one hospital. Slightly more women than men are affected by dengue disease throughout Brazil [36], which is similar to the sex distribution of reported cases in other Latin American countries [9]. During 2001–2010 the male∶female ratio of reported cases ranged from 0·75–0·82 [9], [26]. Regional data were more variable. In 2000 the ratio was 1·09 in the city of São Luís [35], and 0·5 in the City of Santos in 2010 [54]. Women with dengue disease were slightly older than men (mean age 33·7 years versus 30·2 years, respectively; p = 0.019) [37]. DENV distribution Seroprevalence Seroprevalence data provide further information to illustrate epidemiological trends (see Socio-demographic factors below). Population seroprevalence estimates varied throughout Brazil during the decade analysed. In individuals aged 18–65 years, the highest seroprevalence rates were reported in the cities of Mossoró and Caruaru (97·8% and 94·5%, respectively) with lower seroprevalence reported in Rio Branco (69·2%) and Macapá (48·4%) [55]. In serological surveys of volunteers without DF symptoms in Goiânia, seroprevalence was 29·5% in 2001 and 37·3% in 2002 [56]. In Recife, a large urban centre, during 2004–2006, 354 (53·8%) of 658 patients with suspected DENV infections had antibodies to DENV, of which 175 (49·4%) were characterized as primary infections and 179 (50·6%) as secondary infections [36]. In 2002, the seroprevalence in Recife was 76·3% (45 cases) [44]. Few age-specific seroprevalence data were reported in studies included in our analysis. Seroprevalence data also reveal that dengue disease is under-reported. Current passive surveillance systems do not report on mildly symptomatic and non-specific febrile cases and do not represent the true rate of infection and transmission. Based on the findings of a seroepidemiological study in Recife conducted between August and September 2006, Rodriguez-Barraquer et al. calculated that 100/100,000 inhabitants from 66·10% in 2001–2002 (before PNCD implementation) to 48·97% in 2003–2006 (after implementation) [77]. Strengths and limitations of this survey and analysis Despite some gaps, our literature survey and analysis provides a comprehensive overview of the evolving epidemiology of dengue disease in Brazil over the period 2000–2011. This study has several important strengths. Our survey was thorough; we screened >700 articles to identify relevant publications and we developed a comprehensive data extraction instrument to facilitate the capture of all relevant data. Nevertheless, the lack of comprehensive and continuous data for the survey period limits our ability to make comparisons and draw firm conclusions over the years, across regions, and among different ages. For example, age-stratified data were not reported systematically and age range boundaries differed by study. Therefore, although we can suggest trends in age distribution, it is not possible to directly compare data from the selected publications. The inclusion of publications in three languages reduced selection bias in our literature review and analysis. However, despite the inclusion of PhD dissertations and theses there is a bias towards published articles. An assessment of quality of evidence was not carried out and potential weaknesses of some studies such as inadequately described case selection, small sample sizes, and unspecified statistical methods were not reasons for exclusion. Consequently, any limitations of the original studies are carried forward into our review. Many of the studies relied on data reported by passive surveillance systems, which can vary between regions and over time [33] and may misrepresent the number of cases due to changes in reporting behaviour and misclassifications. Avenues for future research Our literature survey and analysis identified several knowledge gaps, which indicate potential avenues for future study. In particular, there are gaps relating to the regional incidence of dengue disease in Brazil, national and regional age-related data, and national and regional serotype information. Further epidemiological studies may help to clarify and define regional differences. The large increase in the number of DHF cases and the shift in age distribution of DHF towards younger age groups that occurred during the 2007–2008 national epidemic warrant explanation. One possibility is that the change in circulating DENV serotypes over time may have affected the pattern of dengue disease epidemiology in Brazil [78]. Age-stratified seroprevalence studies will improve assessment of the level of transmission and inapparent infection, as well as providing information relating to the age shift. Further studies into the risk factors for dengue disease and its severity are also important. For example, in Southeast Asia, DENV infection has been more widespread for a longer period of time than in the Americas, creating a large group of individuals likely to experience a second or third infection [32]. These secondary infections carry an increased risk of severe dengue disease. The data in this review do not address the Southeast Asian experience and further examination as to whether this phenomenon is replicated in Brazil is required. In addition, few studies in the review specifically measured the effects of urbanization in Brazil, with effects only inferred from studies of other socio-demographic factors. The diversity of ethnic backgrounds within the population suggests that further genetic studies are warranted to determine whether ethnicity affects the clinical expression of dengue disease and the risk for severe outcomes. Studies are also required to clearly define associations with other diseases if comorbidity screening is to be used to identify patients at a greater risk of developing DHF. We acknowledge that there are gaps in our epidemiological knowledge of dengue disease in Brazil, due, in part (as in many other countries) to the inherent weaknesses of passive surveillance systems. The majority of infections are clinically non-specific consequently dengue disease is often mis-diagnosed during inter-epidemic periods [8]. The findings presented here are in broad agreement with those of Honório et al. [79], who found only 23·3% of infections were symptomatic, and with Lima et al. [80], who showed that the number of cases reported for the Southeast region of Brazil under-represented the number of infected individuals. This was also found in studies conducted in other countries [81]. Only when an epidemic occurs is the full spectrum of the disease recognised. Consequently, the disease is likely to be under-reported during inter-epidemic periods but over-reported during epidemics [82]. Overall, we believe the national surveillance data under-estimate the true incidence of DENV infections. However, extensive representative serological surveys are required to estimate the true rate of infection and transmission and, thus, despite its drawbacks, passive reporting is important for the identification of disease trends over time. Conclusions Our review and analysis of the epidemiology of dengue disease in Brazil during the past decade suggests an overall increase in the distribution and severity of dengue disease. During the last decade (2000–2010), a total number of 8,440,253 cases were reported (the highest figure in the history of dengue disease in this region) with the highest number of severe cases (221,043; 2.6%) and fatal cases (3058; 0.036% of the total reported cases and 1.38% of the severe cases) [83]. The 1588 cases of severe dengue disease and 163 deaths reported as of epidemiological week 8 in 2011, represent 67% and 73%, respectively, of the total cases registered in the Americas [84]. The co-circulation of multiple DENV serotypes and high dengue disease endemicity may be responsible for the increased occurrence of severe forms of dengue disease and increases in the numbers of dengue disease-related hospitalizations. In addition, the increase in the number of severe cases of dengue disease and a shift in age group predominance of severe forms observed during 2007/08 confirm that dengue disease must remain a public health priority in Brazil. Even though the studies included in this literature review have improved our understanding of the epidemiology of dengue disease in Brazil, further studies are required to clarify the epidemiological pattern and to understand regional epidemiological differences, the diversity of genotypes of circulating serotypes and the extent of herd immunity by age group. Our review has highlighted the main epidemiological characteristics of dengue in Brazil in the first decade of this century and revealed that the epidemiological pattern of dengue disease in Brazil is complex. The changes observed are likely to have been the result of multiple factors, which still require elucidation. Supporting Information Checklist S1 PRISMA 2009 checklist. (PDF) Click here for additional data file. Table S1 Citations used in the literature analysis. (PDF) Click here for additional data file. Table S2 Incidence of dengue disease in Brazil: national data. (PDF) Click here for additional data file. Table S3 Incidence of dengue disease in Brazil: regional data. (PDF) Click here for additional data file.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human and mosquito infections by dengue viruses during and after epidemics in a dengue-endemic region of Colombia.

              We conducted a study in a dengue-endemic area of Colombia to evaluate the dynamics of transmission of dengue viruses during and after epidemics. Information was simultaneously gathered about occurrence of infection in humans and mosquitoes every three months in four cities with endemic transmission. Viral isolation was confirmed in 6.7% of the persons and most were asymptomatic. Adult mosquito and larvae house indexes were not found associated with increased burden of disease. The only entomologic indicator related to dengue infection in humans was the pooled infection rate of mosquitoes. Aedes aegypti infection rates showed significant differences between the epidemic (10.68, 95% confidence interval [CI] = 7.04-15.62) and after epidemic periods of the study (6.15, 95% CI = 3.46-10.19). In addition, Ae. albopictus were also infected with dengue viruses. Increases in mosquito infection rates were associated with increases in human infection rates in the following trimester.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, CA USA )
                1935-2727
                1935-2735
                19 March 2015
                March 2015
                : 9
                : 3
                : e0003499
                Affiliations
                [1 ]Clinical Epidemiology Unit, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
                [2 ]Clinical Epidemiology Unit, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia
                [3 ]Dengue Medical Direction, Sanofi Pasteur LATAM, Bogotá, Colombia
                [4 ]Epidemiology Direction, Sanofi Pasteur LATAM, México City, Mexico
                University of Heidelberg, GERMANY
                Author notes

                LAV and DPR declare that they received payments from Sanofi Pasteur in respect of their work on this review. SBL and ES are employed by Sanofi Pasteur. This does not alter our adherence to all PLOS policies on sharing data and materials. All authors confirm that they had full access to all data and had final responsibility for the decision to submit for publication.

                Conceived and designed the experiments: LAV DPR SBL ES. Performed the experiments: LAV DPR SBL ES. Analyzed the data: LAV DPR SBL ES. Contributed reagents/materials/analysis tools: LAV DPR SBL ES. Wrote the paper: LAV DPR SBL ES.

                [¤]

                Current address: Department of Epidemiology, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, United States of America

                Article
                PNTD-D-14-00248
                10.1371/journal.pntd.0003499
                4366106
                25790245
                454820d5-7865-412e-bdc7-a8bb11fca2b0
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 12 February 2014
                : 27 December 2014
                Page count
                Figures: 3, Tables: 2, Pages: 16
                Funding
                Sanofi Pasteur sponsored this survey and analysis. The Literature Review Group (including members of Sanofi Pasteur) were responsible for the conception of the literature analysis, development of the protocol, data collection, analysis and interpretation of data, provision of critical comments, writing the paper and approving the final version to be published.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article