+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spine Enlargement of Pyramidal Tract-Type Neurons in the Motor Cortex of a Rat Model of Levodopa-Induced Dyskinesia

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Growing evidence suggests that abnormal synaptic plasticity of cortical neurons underlies levodopa-induced dyskinesia (LID) in Parkinson's disease (PD). Spine morphology reflects synaptic plasticity resulting from glutamatergic transmission. We previously reported that enlargement of the dendritic spines of intratelencephalic-type (IT) neurons in the primary motor cortex (M1) is linked to the development of LID. However, the relevance of another M1 neuron type, pyramidal-tract (PT) neurons, to LID remains unknown. We examined the morphological changes of the dendritic spines of M1 PT neurons in a rat model of LID. We quantified the density and size of these spines in 6-hydroxydopamine-lesioned rats (a model of PD), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Dopaminergic denervation alone had no effect on spine density and head area. However, the LID model showed significant increases in the density and spine head area and the development of dyskinetic movements. In contrast, levodopa treatment of normal rats increased spine density alone. Although, chronic levodopa treatment increases PT neuron spine density, with or without dopaminergic denervation, enlargement of PT neuron spines appears to be a specific feature of LID. This finding suggests that PT neurons become hyperexcited in the LID model, in parallel with the enlargement of spines. Thus, spine enlargement, and the resultant hyperexcitability of PT pyramidal neurons, in the M1 cortex might contribute to abnormal cortical neuronal plasticity in LID.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          Structural dynamics of dendritic spines in memory and cognition.

          Recent studies show that dendritic spines are dynamic structures. Their rapid creation, destruction and shape-changing are essential for short- and long-term plasticity at excitatory synapses on pyramidal neurons in the cerebral cortex. The onset of long-term potentiation, spine-volume growth and an increase in receptor trafficking are coincident, enabling a 'functional readout' of spine structure that links the age, size, strength and lifetime of a synapse. Spine dynamics are also implicated in long-term memory and cognition: intrinsic fluctuations in volume can explain synapse maintenance over long periods, and rapid, activity-triggered plasticity can relate directly to cognitive processes. Thus, spine dynamics are cellular phenomena with important implications for cognition and memory. Furthermore, impaired spine dynamics can cause psychiatric and neurodevelopmental disorders. Copyright 2010 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            Locally dynamic synaptic learning rules in pyramidal neuron dendrites.

            Long-term potentiation (LTP) of synaptic transmission underlies aspects of learning and memory. LTP is input-specific at the level of individual synapses, but neural network models predict interactions between plasticity at nearby synapses. Here we show in mouse hippocampal pyramidal cells that LTP at individual synapses reduces the threshold for potentiation at neighbouring synapses. After input-specific LTP induction by two-photon glutamate uncaging or by synaptic stimulation, subthreshold stimuli, which by themselves were too weak to trigger LTP, caused robust LTP and spine enlargement at neighbouring spines. Furthermore, LTP induction broadened the presynaptic-postsynaptic spike interval for spike-timing-dependent LTP within a dendritic neighbourhood. The reduction in the threshold for LTP induction lasted approximately 10 min and spread over approximately 10 microm of dendrite. These local interactions between neighbouring synapses support clustered plasticity models of memory storage and could allow for the binding of behaviourally linked information on the same dendritic branch.
              • Record: found
              • Abstract: found
              • Article: not found

              A critical time window for dopamine actions on the structural plasticity of dendritic spines.

              Animal behaviors are reinforced by subsequent rewards following within a narrow time window. Such reward signals are primarily coded by dopamine, which modulates the synaptic connections of medium spiny neurons in the striatum. The mechanisms of the narrow timing detection, however, remain unknown. Here, we optically stimulated dopaminergic and glutamatergic inputs separately and found that dopamine promoted spine enlargement only during a narrow time window (0.3 to 2 seconds) after the glutamatergic inputs. The temporal contingency was detected by rapid regulation of adenosine 3',5'-cyclic monophosphate in thin distal dendrites, in which protein-kinase A was activated only within the time window because of a high phosphodiesterase activity. Thus, we describe a molecular basis of reinforcement plasticity at the level of single dendritic spines.

                Author and article information

                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                13 April 2017
                : 11
                1Department of Neurology, Aomori Prefectural Central Hospital Aomori, Japan
                2Department of Neurophysiology, Hirosaki University Graduate School of Medicine Hirosaki, Japan
                Author notes

                Edited by: Jaewon Ko, Daegu Gyeongbuk Institute of Science and Technology, South Korea

                Reviewed by: Se-Young Choi, Seoul National University, South Korea; Weien Yuan, Shanghai Jiao Tong University, China

                *Correspondence: Tatsuya Ueno lacote19thg@ 123456gmail.com

                This article was submitted to Neurodegeneration, a section of the journal Frontiers in Neuroscience

                Copyright © 2017 Ueno, Nishijima, Ueno and Tomiyama.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 40, Pages: 8, Words: 5523
                Original Research


                Comment on this article