7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Biochemical and Genetic Analyses Provide Insight Into the Structural and Mechanistic Properties of Actin Filament Disassembly by the Aip1p–Cofilin Complex inSaccharomyces cerevisiae

      ,
      Genetics
      Genetics Society of America

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Explication of the Aip1p/cofilin/actin filament complex may lead to a more detailed understanding of the mechanisms by which Aip1p and cofilin collaborate to rapidly disassemble filaments. We further characterized the actin-Aip1p interface through a random mutagenic screen of ACT1, identifying a novel Aip1p interaction site on actin. This finding is consistent with our current ternary complex model and offers insights into how Aip1p may disturb intersubunit contacts within an actin filament. In addition, site-directed mutagenesis aimed at interfering with salt bridge interactions at the predicted Aip1p-cofilin interface revealed hyperactive alleles of cof1 and aip1 that support the ternary complex model and suggest that conformational changes in cofilin structure may be transmitted to actin filaments, causing increased destabilization. Furthermore, these data support an active role for Aip1p in promoting actin filament turnover.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin.

          ADF/cofilins are key regulators of actin dynamics during cellular motility, yet their precise role and mechanism of action are shrouded in ambiguity. Direct observation of actin filaments by evanescent wave microscopy showed that cofilins from fission yeast and human do not increase the rate that pointed ends of actin filaments shorten beyond the rate for ADP-actin subunits, but both cofilins inhibit elongation and subunit dissociation at barbed ends. Direct observation also showed that cofilins from fission yeast, Acanthamoeba, and human sever actin filaments optimally at low-cofilin binding densities well below their K(d)s, but not at high binding densities. High concentrations of cofilin nucleate actin assembly. Thus, the action of cofilins in cells will depend on the local concentration of active cofilins: low concentrations favor severing, whereas high concentrations favor nucleation. These results establish a clear paradigm for actin turnover by cofilin in cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function

            Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (∼75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular requirements for actin-based lamella formation in Drosophila S2 cells

              Cell migration occurs through the protrusion of the actin-enriched lamella. Here, we investigated the effects of RNAi depletion of ∼90 proteins implicated in actin function on lamella formation in Drosophila S2 cells. Similar to in vitro reconstitution studies of actin-based Listeria movement, we find that lamellae formation requires a relatively small set of proteins that participate in actin nucleation (Arp2/3 and SCAR), barbed end capping (capping protein), filament depolymerization (cofilin and Aip1), and actin monomer binding (profilin and cyclase-associated protein). Lamellae are initiated by parallel and partially redundant signaling pathways involving Rac GTPases and the adaptor protein Nck, which stimulate SCAR, an Arp2/3 activator. We also show that RNAi of three proteins (kette, Abi, and Sra-1) known to copurify with and inhibit SCAR in vitro leads to SCAR degradation, revealing a novel function of this protein complex in SCAR stability. Our results have identified an essential set of proteins involved in actin dynamics during lamella formation in Drosophila S2 cells.
                Bookmark

                Author and article information

                Journal
                Genetics
                Genetics
                Genetics Society of America
                0016-6731
                1943-2631
                July 19 2007
                July 2007
                July 2007
                May 04 2007
                : 176
                : 3
                : 1527-1539
                Article
                10.1534/genetics.107.072066
                1931519
                17483419
                455860a8-8dc9-4317-8e5b-26a7c502a6e0
                © 2007
                History

                Comments

                Comment on this article