83
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiple-Insecticide Resistance in Anopheles gambiae Mosquitoes, Southern Côte d’Ivoire

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Preventing malaria used to seem as simple as killing the vector, the mosquito; however, a recent study shows that this concept is now anything but simple. The highly effective use of insecticide-treated bed nets and indoor insecticide spraying is being challenged by mosquito resistance to insecticides. In West Africa, populations of this mosquito vector are now resistant to all 4 classes of insecticide approved for this use. And no new classes of insecticide are anticipated until 2020, at the earliest. Development of newer classes of insecticide is crucial because if resistance continues unchecked, the hard-earned progress in malaria control in Africa could be quickly reversed.

          Abstract

          Malaria control depends on mosquito susceptibility to insecticides. We tested Anopheles gambiae mosquitoes from Côte d’Ivoire for resistance and screened a subset for target site mutations. Mosquitoes were resistant to insecticides of all approved classes. Such complete resistance, which includes exceptionally strong phenotypes, presents a major threat to malaria control.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?

          The use of pyrethroid insecticides in malaria vector control has increased dramatically in the past decade through the scale up of insecticide treated net distribution programmes and indoor residual spraying campaigns. Inevitably, the major malaria vectors have developed resistance to these insecticides and the resistance alleles are spreading at an exceptionally rapid rate throughout Africa. Although substantial progress has been made on understanding the causes of pyrethroid resistance, remarkably few studies have focused on the epidemiological impact of resistance on current malaria control activities. As we move into the malaria eradication era, it is vital that the implications of insecticide resistance are understood and strategies to mitigate these effects are implemented. Copyright © 2010 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms

            Background SINEs (Short INterspersed Elements) are homoplasy-free and co-dominant genetic markers which are considered to represent useful tools for population genetic studies, and could help clarifying the speciation processes ongoing within the major malaria vector in Africa, Anopheles gambiae s.s. Here, we report the results of the analysis of the insertion polymorphism of a nearly 200 bp-long SINE (SINE200) within genome areas of high differentiation (i.e. "speciation islands") of M and S A. gambiae molecular forms. Methods A SINE-PCR approach was carried out on thirteen SINE200 insertions in M and S females collected along the whole range of distribution of A. gambiae s.s. in sub-Saharan Africa. Ten specimens each for Anopheles arabiensis, Anopheles melas, Anopheles quadriannulatus A and 15 M/S hybrids from laboratory crosses were also analysed. Results Eight loci were successfully amplified and were found to be specific for A. gambiae s.s.: 5 on 2L chromosome and one on X chromosome resulted monomorphic, while two loci positioned respectively on 2R (i.e. S200 2R12D) and X (i.e. S200 X6.1) chromosomes were found to be polymorphic. S200 2R12D was homozygote for the insertion in most S-form samples, while intermediate levels of polymorphism were shown in M-form, resulting in an overall high degree of genetic differentiation between molecular forms (Fst = 0.46 p < 0.001) and within M-form (Fst = 0.46 p < 0.001). The insertion of S200 X6.1 was found to be fixed in all M- and absent in all S-specimens. This led to develop a novel easy-to-use PCR approach to straightforwardly identify A. gambiae molecular forms. This novel approach allows to overcome the constraints associated with markers on the rDNA region commonly used for M and S identification. In fact, it is based on a single copy and irreversible SINE200 insertion and, thus, is not subjected to peculiar evolutionary patterns affecting rDNA markers, e.g. incomplete homogenization of the arrays through concerted evolution and/or mixtures of M and S IGS-sequences among the arrays of single chromatids. Conclusion The approach utilized allowed to develop new easy-to-use co-dominant markers for the analysis of genetic differentiation between M and S-forms and opens new perspectives in the study of the speciation process ongoing within A. gambiae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors.

              High insecticide resistance resulting from insensitive acetylcholinesterase (AChE) has emerged in mosquitoes. A single mutation (G119S of the ace-1 gene) explains this high resistance in Culex pipiens and in Anopheles gambiae. In order to provide better documentation of the ace-1 gene and the effect of the G119S mutation, we present a three-dimension structure model of AChE, showing that this unique substitution is localized in the oxyanion hole, explaining the insecticide insensitivity and its interference with the enzyme catalytic functions. As the G119S creates a restriction site, a simple PCR test was devised to detect its presence in both A. gambiae and C. pipiens, two mosquito species belonging to different subfamilies (Culicinae and Anophelinae). It is possibile that this mutation also explains the high resistance found in other mosquitoes, and the present results indicate that the PCR test detects the G119S mutation in the malaria vector A. albimanus. The G119S has thus occurred independently at least four times in mosquitoes and this PCR test is probably of broad applicability within the Culicidae family.
                Bookmark

                Author and article information

                Journal
                Emerg Infect Dis
                Emerging Infect. Dis
                EID
                Emerging Infectious Diseases
                Centers for Disease Control and Prevention
                1080-6040
                1080-6059
                September 2012
                : 18
                : 9
                : 1508-1511
                Affiliations
                [1]Liverpool School of Tropical Medicine, Liverpool, UK (C.V.A. Edi, B.G. Koudou, C.M. Jones, D. Weetman, H. Ranson);
                [2]Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire (C.V.A. Edi, B.G. Koudou);
                [3]and Université d’Abobo-Adjamé, Abidjan (B.G. Koudou)
                Author notes
                Address for correspondence: Hilary Ranson, Vector Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; email: hranson@ 123456liverpool.ac.uk
                Article
                12-0262
                10.3201/eid1809.120262
                3437712
                22932478
                456ff0eb-de2c-46a6-a7f4-9477b883cf30
                History
                Categories
                Dispatch
                Dispatch

                Infectious disease & Microbiology
                côte d’ivoire,malaria,insecticide resistance,ddt,organophosphates,carbamates,anopheles gambiae,acetylcholinesterase,mosquitoes,vector-borne infections,pyrethroids

                Comments

                Comment on this article