6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Entanglement in topological systems

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          These lecture notes on entanglement in topological systems are part of the 48th IFF Spring School 2017 on Topological Matter: Topological Insulators, Skyrmions and Majoranas at the Forschungszentrum Juelich, Germany. They cover a short discussion on topologically ordered phases and review the two main tools available for detecting topological order - the entanglement entropy and the entanglement spectrum.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Classification of topological insulators and superconductors in three spatial dimensions

          We systematically study topological phases of insulators and superconductors (SCs) in 3D. We find that there exist 3D topologically non-trivial insulators or SCs in 5 out of 10 symmetry classes introduced by Altland and Zirnbauer within the context of random matrix theory. One of these is the recently introduced Z_2 topological insulator in the symplectic symmetry class. We show there exist precisely 4 more topological insulators. For these systems, all of which are time-reversal (TR) invariant in 3D, the space of insulating ground states satisfying certain discrete symmetry properties is partitioned into topological sectors that are separated by quantum phase transitions. 3 of the above 5 topologically non-trivial phases can be realized as TR invariant SCs, and in these the different topological sectors are characterized by an integer winding number defined in momentum space. When such 3D topological insulators are terminated by a 2D surface, they support a number (which may be an arbitrary non-vanishing even number for singlet pairing) of Dirac fermion (Majorana fermion when spin rotation symmetry is completely broken) surface modes which remain gapless under arbitrary perturbations that preserve the characteristic discrete symmetries. In particular, these surface modes completely evade Anderson localization. These topological phases can be thought of as 3D analogues of well known paired topological phases in 2D such as the chiral p-wave SC. In the corresponding topologically non-trivial and topologically trivial 3D phases, the wavefunctions exhibit markedly distinct behavior. When an electromagnetic U(1) gauge field and fluctuations of the gap functions are included in the dynamics, the SC phases with non-vanishing winding number possess non-trivial topological ground state degeneracies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Electronic Structure of Pyrochlore Iridates: From Topological Dirac Metal to Mott Insulator

            In 5d transition metal oxides such as the iridates, novel properties arise from the interplay of electron correlations and spin-orbit interactions. We investigate the electronic structure of the pyrochlore iridates, (such as Y\(_{2}\)Ir\(_{2}\)O\(_{7}\)) using density functional theory, LDA+U method, and effective low energy models. A remarkably rich phase diagram emerges on tuning the correlation strength U. The Ir magnetic moment are always found to be non-collinearly ordered. However, the ground state changes from a magnetic metal at weak U, to a Mott insulator at large U. Most interestingly, the intermediate U regime is found to be a Dirac semi-metal, with vanishing density of states at the Fermi energy. It also exhibits topological properties - manifested by special surface states in the form of Fermi arcs, that connect the bulk Dirac points. This Dirac phase, a three dimensional analog of graphene, is proposed as the ground state of Y\(_{2}\)Ir\(_{2}\)O\(_{7}\) and related compounds. A narrow window of magnetic `axion' insulator, with axion parameter \(\theta=\pi\), may also be present at intermediate U. An applied magnetic field induces ferromagnetic order and a metallic ground state.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A topological Dirac insulator in a quantum spin Hall phase : Experimental observation of first strong topological insulator

              When electrons are subject to a large external magnetic field, the conventional charge quantum Hall effect \cite{Klitzing,Tsui} dictates that an electronic excitation gap is generated in the sample bulk, but metallic conduction is permitted at the boundary. Recent theoretical models suggest that certain bulk insulators with large spin-orbit interactions may also naturally support conducting topological boundary states in the extreme quantum limit, which opens up the possibility for studying unusual quantum Hall-like phenomena in zero external magnetic field. Bulk Bi\(_{1-x}\)Sb\(_x\) single crystals are expected to be prime candidates for one such unusual Hall phase of matter known as the topological insulator. The hallmark of a topological insulator is the existence of metallic surface states that are higher dimensional analogues of the edge states that characterize a spin Hall insulator. In addition to its interesting boundary states, the bulk of Bi\(_{1-x}\)Sb\(_x\) is predicted to exhibit three-dimensional Dirac particles, another topic of heightened current interest. Here, using incident-photon-energy-modulated (IPEM-ARPES), we report the first direct observation of massive Dirac particles in the bulk of Bi\(_{0.9}\)Sb\(_{0.1}\), locate the Kramers' points at the sample's boundary and provide a comprehensive mapping of the topological Dirac insulator's gapless surface modes. These findings taken together suggest that the observed surface state on the boundary of the bulk insulator is a realization of the much sought exotic "topological metal". They also suggest that this material has potential application in developing next-generation quantum computing devices.
                Bookmark

                Author and article information

                Journal
                2017-02-06
                Article
                1702.01525
                457d8a85-dc75-40d2-a670-3fe9809ef4b7

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                lecture notes for the 48th IFF Spring School 2017 at the Forschungszentrum Juelich (2017) 17 pages + 6 pages referenses
                cond-mat.str-el

                Condensed matter
                Condensed matter

                Comments

                Comment on this article