8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-efficiency chiral meta-lens

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present here a compact metasurface lens element that enables simultaneous and spatially separated imaging of light of opposite circular polarization states. The design overcomes a limitation of previous chiral lenses reliant on the traditional geometric phase approach by allowing for independent focusing of both circular polarizations without a 50% efficiency trade-off. We demonstrate circular polarization-dependent imaging at visible wavelengths with polarization contrast greater than 20dB and efficiencies as high as 70%.

          Related collections

          Most cited references 17

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dielectric Metasurfaces for Complete Control of Phase and Polarization with Subwavelength Spatial Resolution and High Transmission

           ,  ,   (2015)
          Metasurfaces are planar structures that locally modify the polarization, phase, and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurfaces have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here we show a metasurface platform based on high-contrast dielectric elliptical nano-posts which provides complete control of polarization and phase with sub-wavelength spatial resolution and experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase-plates, wave-plates, polarizers, beam-splitters, as well as polarization switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Adiabatic Phase and Pancharatnam's Phase for Polarized Light

             M.V. Berry (1987)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural origin of circularly polarized iridescence in jeweled beetles.

              The iridescent metallic green beetle, Chrysina gloriosa, which selectively reflects left circularly polarized light, possesses an exoskeleton decorated by hexagonal cells (approximately 10 microm) that coexist with pentagons and heptagons. The fraction of hexagons decreases with an increase in curvature. In bright field microscopy, each cell contains a bright yellow core, placed in a greenish cell with yellowish border, but the core disappears in dark field. With use of confocal microscopy, we observe that these cells consist of nearly concentric nested arcs that lie on the surface of a shallow cone. We infer that the patterns are structurally and optically analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. These textures provide the basis for the morphogenesis as well as key insights for emulating the intricate optical response of the exoskeleton of scarab beetles.
                Bookmark

                Author and article information

                Contributors
                capasso@seas.harvard.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                8 May 2018
                8 May 2018
                2018
                : 8
                Affiliations
                ISNI 000000041936754X, GRID grid.38142.3c, John A. Paulson School of Engineering and Applied Sciences, , Harvard University, ; Cambridge, MA USA
                Article
                25675
                10.1038/s41598-018-25675-3
                5940891
                29740171
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized

                Comments

                Comment on this article