51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fraternal twins: Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1, two homologous EF-hand containing calcium binding adaptor proteins with distinct functions

      review-article
      1 , 1 , 1 ,
      Cell Communication and Signaling : CCS
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in the intracellular calcium concentration govern cytoskeletal rearrangement, mitosis, apoptosis, transcriptional regulation or synaptic transmission, thereby, regulating cellular effector and organ functions. Calcium binding proteins respond to changes in the intracellular calcium concentration with structural changes, triggering enzymatic activation and association with downstream proteins. One type of calcium binding proteins are EF-hand super family proteins. Here, we describe two recently discovered homologous EF-hand containing adaptor proteins, Swiprosin-1/EF-hand domain containing 2 (EFhd2) and Swiprosin-2/EF-hand domain containing 1 (EFhd1), which are related to allograft inflammatory factor-1 (AIF-1). For reasons of simplicity and concision we propose to name Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 from now on EFhd2 and EFhd1, according to their respective gene symbols. AIF-1 and Swiprosin-1/EFhd2 are already present in Bilateria, for instance in Drosophila melanogaster and Caenhorhabditis elegans. Swiprosin-2/EFhd1 arose later from gene duplication in the tetrapodal lineage. Secondary structure prediction of AIF-1 reveals disordered regions and one functional EF-hand. Swiprosin-1/EFhd2 and Swiprosin-2/EFhd1 exhibit a disordered region at the N-terminus, followed by two EF-hands and a coiled-coil domain. Whereas both proteins are similar in their predicted overall structure they differ in a non-homologous stretch of 60 amino acids just in front of the EF-hands. AIF-1 controls calcium-dependent cytoskeletal rearrangement in innate immune cells by means of its functional EF-hand. We propose that Swiprosin-1/EFhd2 as well is a cytoskeleton associated adaptor protein involved in immune and brain cell function. Pro-inflammatory conditions are likely to modulate expression and function of Swiprosin-1/EFhd2. Swiprosin-2/EFhd1, on the other hand, modulates apoptosis and differentiation of neuronal and muscle precursor cells, probably through an association with mitochondria. We suggest furthermore that Swiprosin-2/EFhd1 is part of a cellular response to oxidative stress, which could explain its pro-survival activity in neuronal, muscle and perhaps some malignant tissues.

          Related collections

          Most cited references97

          • Record: found
          • Abstract: found
          • Article: not found

          Tau-mediated neurodegeneration in Alzheimer's disease and related disorders.

          Advances in our understanding of the mechanisms of tau-mediated neurodegeneration in Alzheimer's disease (AD) and related tauopathies, which are characterized by prominent CNS accumulations of fibrillar tau inclusions, are rapidly moving this previously underexplored disease pathway to centre stage for disease-modifying drug discovery efforts. However, controversies abound concerning whether or not the deleterious effects of tau pathologies result from toxic gains-of-function by pathological tau or from critical losses of normal tau function in the disease state. This Review summarizes the most recent advances in our knowledge of the mechanisms of tau-mediated neurodegeneration to forge an integrated concept of those tau-linked disease processes that drive the onset and progression of AD and related tauopathies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Calcium--a life and death signal.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calcium signaling in platelets.

              Agonist-induced elevation in cytosolic Ca2+ concentrations is essential for platelet activation in hemostasis and thrombosis. It occurs through Ca2+ release from intracellular stores and Ca2+ entry through the plasma membrane (PM). Ca2+ store release is a well-established process involving phospholipase (PL)C-mediated production of inositol-1,4,5-trisphosphate (IP3), which in turn releases Ca2+ from the intracellular stores through IP3 receptor channels. In contrast, the mechanisms controlling Ca2+ entry and the significance of this process for platelet activation have been elucidated only very recently. In platelets, as in other non-excitable cells, the major way of Ca2+ entry involves the agonist-induced release of cytosolic sequestered Ca2+ followed by Ca2+ influx through the PM, a process referred to as store-operated calcium entry (SOCE). It is now clear that stromal interaction molecule 1 (STIM1), a Ca2+ sensor molecule in intracellular stores, and the four transmembrane channel protein Orai1 are the key players in platelet SOCE. The other major Ca2+ entry mechanism is mediated by the direct receptor-operated calcium (ROC) channel, P2X1. Besides these, canonical transient receptor potential channel (TRPC) 6 mediates Ca2+ entry through the PM. This review summarizes the current knowledge of platelet Ca2+ homeostasis with a focus on the newly identified Ca2+ entry mechanisms.
                Bookmark

                Author and article information

                Journal
                Cell Commun Signal
                Cell Communication and Signaling : CCS
                BioMed Central
                1478-811X
                2011
                18 January 2011
                : 9
                : 2
                Affiliations
                [1 ]Division of Molecular Immunology, Department of Medicine III, Nikolaus Fiebiger Center, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
                Article
                1478-811X-9-2
                10.1186/1478-811X-9-2
                3036668
                21244694
                458af6fa-248e-4195-af46-80f3e59af09e
                Copyright ©2011 Dütting et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 2 December 2010
                : 18 January 2011
                Categories
                Review

                Cell biology
                Cell biology

                Comments

                Comment on this article