7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ATP-driven sodium pump in Streptococcus faecalis.

      Proceedings of the National Academy of Sciences of the United States of America
      Adenosine Triphosphatases, metabolism, Bacterial Proteins, Biological Transport, Active, Carrier Proteins, Cell Membrane, enzymology, Cell-Free System, Enterococcus faecalis, Sodium, Sodium-Hydrogen Antiporter

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sodium extrusion by bacteria is generally attributed to secondary antiport of Na+ for H+ energized by the proton circulation. Streptococcus faecalis is an exception, in that sodium expulsion from intact cells requires the generation of ATP but does not depend on the protonmotive force. Unfortunately, studies with everted membrane vesicles failed to reveal the expected sodium pump; instead, the vesicles contained a conventional secondary Na+/H+ antiporter. We report here that everted membrane vesicles prepared in the presence of protease inhibitors retain an ATP-driven sodium transport system. The evidence includes the findings that (i) accumulation of 22Na+ by these vesicles is resistant to reagents that dissipate the protonmotive force but requires ATP and (ii) the vesicles contain a sodium-stimulated ATPase that is distinct from F1F0 ATPase, and whose presence is correlated with sodium transport activity. Sodium movements appear to be electroneutral and are accompanied by movement of H+ in the opposite direction. When membranes are incubated in the absence of protease inhibitors, a secondary Na+/H+ antiport activity emerges, possibly by degradation of the sodium pump. We suggest that S. faecalis expels Na+ by means of an ATP-driven primary transport system that mediates exchange of Na+ for H+. The Na+/H+ antiporter seen in earlier membrane preparation is an artefact of proteolytic degradation.

          Related collections

          Author and article information

          Comments

          Comment on this article