75
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Linguistically Modulated Perception and Cognition: The Label-Feedback Hypothesis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          How does language impact cognition and perception? A growing number of studies show that language, and specifically the practice of labeling, can exert extremely rapid and pervasive effects on putatively non-verbal processes such as categorization, visual discrimination, and even simply detecting the presence of a stimulus. Progress on the empirical front, however, has not been accompanied by progress in understanding the mechanisms by which language affects these processes. One puzzle is how effects of language can be both deep, in the sense of affecting even basic visual processes, and yet vulnerable to manipulations such as verbal interference, which can sometimes nullify effects of language. In this paper, I review some of the evidence for effects of language on cognition and perception, showing that performance on tasks that have been presumed to be non-verbal is rapidly modulated by language. I argue that a clearer understanding of the relationship between language and cognition can be achieved by rejecting the distinction between verbal and non-verbal representations and by adopting a framework in which language modulates ongoing cognitive and perceptual processing in a flexible and task-dependent manner.

          Related collections

          Most cited references83

          • Record: found
          • Abstract: found
          • Article: not found

          From sensation to cognition.

          M. Mesulam (1998)
          Sensory information undergoes extensive associative elaboration and attentional modulation as it becomes incorporated into the texture of cognition. This process occurs along a core synaptic hierarchy which includes the primary sensory, upstream unimodal, downstream unimodal, heteromodal, paralimbic and limbic zones of the cerebral cortex. Connections from one zone to another are reciprocal and allow higher synaptic levels to exert a feedback (top-down) influence upon earlier levels of processing. Each cortical area provides a nexus for the convergence of afferents and divergence of efferents. The resultant synaptic organization supports parallel as well as serial processing, and allows each sensory event to initiate multiple cognitive and behavioural outcomes. Upstream sectors of unimodal association areas encode basic features of sensation such as colour, motion, form and pitch. More complex contents of sensory experience such as objects, faces, word-forms, spatial locations and sound sequences become encoded within downstream sectors of unimodal areas by groups of coarsely tuned neurons. The highest synaptic levels of sensory-fugal processing are occupied by heteromodal, paralimbic and limbic cortices, collectively known as transmodal areas. The unique role of these areas is to bind multiple unimodal and other transmodal areas into distributed but integrated multimodal representations. Transmodal areas in the midtemporal cortex, Wernicke's area, the hippocampal-entorhinal complex and the posterior parietal cortex provide critical gateways for transforming perception into recognition, word-forms into meaning, scenes and events into experiences, and spatial locations into targets for exploration. All cognitive processes arise from analogous associative transformations of similar sets of sensory inputs. The differences in the resultant cognitive operation are determined by the anatomical and physiological properties of the transmodal node that acts as the critical gateway for the dominant transformation. Interconnected sets of transmodal nodes provide anatomical and computational epicentres for large-scale neurocognitive networks. In keeping with the principles of selectively distributed processing, each epicentre of a large-scale network displays a relative specialization for a specific behavioural component of its principal neurospychological domain. The destruction of transmodal epicentres causes global impairments such as multimodal anomia, neglect and amnesia, whereas their selective disconnection from relevant unimodal areas elicits modality-specific impairments such as prosopagnosia, pure word blindness and category-specific anomias. The human brain contains at least five anatomically distinct networks. The network for spatial awareness is based on transmodal epicentres in the posterior parietal cortex and the frontal eye fields; the language network on epicentres in Wernicke's and Broca's areas; the explicit memory/emotion network on epicentres in the hippocampal-entorhinal complex and the amygdala; the face-object recognition network on epicentres in the midtemporal and temporopolar cortices; and the working memory-executive function network on epicentres in the lateral prefrontal cortex and perhaps the posterior parietal cortex. Individual sensory modalities give rise to streams of processing directed to transmodal nodes belonging to each of these networks. The fidelity of sensory channels is actively protected through approximately four synaptic levels of sensory-fugal processing. The modality-specific cortices at these four synaptic levels encode the most veridical representations of experience. Attentional, motivational and emotional modulations, including those related to working memory, novelty-seeking and mental imagery, become increasingly more pronounced within downstream components of unimodal areas, where they help to create a highly edited subjective version of the world. (ABSTRACT TRUNCATED)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The distinct modes of vision offered by feedforward and recurrent processing.

            An analysis of response latencies shows that when an image is presented to the visual system, neuronal activity is rapidly routed to a large number of visual areas. However, the activity of cortical neurons is not determined by this feedforward sweep alone. Horizontal connections within areas, and higher areas providing feedback, result in dynamic changes in tuning. The differences between feedforward and recurrent processing could prove pivotal in understanding the distinctions between attentive and pre-attentive vision as well as between conscious and unconscious vision. The feedforward sweep rapidly groups feature constellations that are hardwired in the visual brain, yet is probably incapable of yielding visual awareness; in many cases, recurrent processing is necessary before the features of an object are attentively grouped and the stimulus can enter consciousness.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              An interactive activation model of context effects in letter perception: I. An account of basic findings.

                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front. Psychology
                Frontiers in Psychology
                Frontiers Research Foundation
                1664-1078
                08 March 2012
                2012
                : 3
                : 54
                Affiliations
                [1] 1simpleDepartment of Psychology, University of Wisconsin–Madison Madison, WI, USA
                Author notes

                Edited by: Andriy Myachykov, University of Glasgow, UK

                Reviewed by: Daniel Casasanto, Max Planck Institute for Psycholinguistics, Netherlands; David Kemmerer, Purdue University, USA

                *Correspondence: Gary Lupyan, Department of Psychology, University of Wisconsin–Madison, Madison, WI 53706, USA. e-mail: lupyan@ 123456wisc.edu

                This article was submitted to Frontiers in Cognition, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2012.00054
                3297074
                22408629
                459830a4-d74e-4b01-8bc8-f24f08a5f0cc
                Copyright © 2012 Lupyan.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 02 September 2011
                : 11 February 2012
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 134, Pages: 13, Words: 12941
                Categories
                Psychology
                Hypothesis and Theory

                Clinical Psychology & Psychiatry
                categorization,linguistic relativity,language and thought,top-down effects,whorf,labels,perception

                Comments

                Comment on this article