8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhancing Working Memory Training with Transcranial Direct Current Stimulation

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Physiological basis of transcranial direct current stimulation.

          Since the rediscovery of transcranial direct current stimulation (tDCS) about 10 years ago, interest in tDCS has grown exponentially. A noninvasive stimulation technique that induces robust excitability changes within the stimulated cortex, tDCS is increasingly being used in proof-of-principle and stage IIa clinical trials in a wide range of neurological and psychiatric disorders. Alongside these clinical studies, detailed work has been performed to elucidate the mechanisms underlying the observed effects. In this review, the authors bring together the results from these pharmacological, neurophysiological, and imaging studies to describe their current knowledge of the physiological effects of tDCS. In addition, the theoretical framework for how tDCS affects motor learning is proposed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory.

            Previous studies have claimed that weak transcranial direct current stimulation (tDCS) induces persisting excitability changes in the human motor cortex that can be more pronounced than cortical modulation induced by transcranial magnetic stimulation, but there are no studies that have evaluated the effects of tDCS on working memory. Our aim was to determine whether anodal transcranial direct current stimulation, which enhances brain cortical excitability and activity, would modify performance in a sequential-letter working memory task when administered to the dorsolateral prefrontal cortex (DLPFC). Fifteen subjects underwent a three-back working memory task based on letters. This task was performed during sham and anodal stimulation applied over the left DLPFC. Moreover seven of these subjects performed the same task, but with inverse polarity (cathodal stimulation of the left DLPFC) and anodal stimulation of the primary motor cortex (M1). Our results indicate that only anodal stimulation of the left prefrontal cortex, but not cathodal stimulation of left DLPFC or anodal stimulation of M1, increases the accuracy of the task performance when compared to sham stimulation of the same area. This accuracy enhancement during active stimulation cannot be accounted for by slowed responses, as response times were not changed by stimulation. Our results indicate that left prefrontal anodal stimulation leads to an enhancement of working memory performance. Furthermore, this effect depends on the stimulation polarity and is specific to the site of stimulation. This result may be helpful to develop future interventions aiming at clinical benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making working memory work: a meta-analysis of executive-control and working memory training in older adults.

              This meta-analysis examined the effects of process-based executive-function and working memory training (49 articles, 61 independent samples) in older adults (> 60 years). The interventions resulted in significant effects on performance on the trained task and near-transfer tasks; significant results were obtained for the net pretest-to-posttest gain relative to active and passive control groups and for the net effect at posttest relative to active and passive control groups. Far-transfer effects were smaller than near-transfer effects but were significant for the net pretest-to-posttest gain relative to passive control groups and for the net gain at posttest relative to both active and passive control groups. We detected marginally significant differences in training-induced improvements between working memory and executive-function training, but no differences between the training-induced improvements observed in older adults and younger adults, between the benefits associated with adaptive and nonadaptive training, or between the effects in active and passive control conditions. Gains did not vary with total training time. © The Author(s) 2014.
                Bookmark

                Author and article information

                Journal
                Journal of Cognitive Neuroscience
                Journal of Cognitive Neuroscience
                MIT Press - Journals
                0898-929X
                1530-8898
                September 2016
                September 2016
                : 28
                : 9
                : 1419-1432
                Affiliations
                [1 ]University of California, Irvine
                [2 ]MIND Research Institute, Irvine, CA
                [3 ]University of Michigan
                [4 ]Yale University
                Article
                10.1162/jocn_a_00979
                27167403
                4599b582-53ee-42ae-a353-c91e92b6ebd6
                © 2016
                History

                Comments

                Comment on this article