64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression

      review-article
      , 1
      Cell Cycle
      Taylor & Francis
      cell cycle, chromatin remodeling, differentiation, proliferation, SWI/SNF

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Cell proliferation and differentiation show a remarkable inverse relationship. Precursor cells continue division before acquiring a fully differentiated state, while terminal differentiation usually coincides with proliferation arrest and permanent exit from the division cycle. Mechanistic insight in the temporal coordination between cell cycle exit and differentiation has come from studies of cells in culture and genetic animal models. As initially described for skeletal muscle differentiation, temporal coordination involves mutual antagonism between cyclin-dependent kinases that promote cell cycle entry and transcription factors that induce tissue-specific gene expression. Recent insights highlight the contribution of chromatin-regulating complexes that act in conjunction with the transcription factors and determine their activity. In particular SWI/SNF chromatin remodelers contribute to dual regulation of cell cycle and tissue-specific gene expression during terminal differentiation. We review the concerted regulation of the cell cycle and cell type-specific transcription, and discuss common mutations in human cancer that emphasize the clinical importance of proliferation versus differentiation control.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: not found
          • Article: not found

          CDK inhibitors: positive and negative regulators of G1-phase progression.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dissecting the regulatory circuitry of a eukaryotic genome.

            Genome-wide expression analysis was used to identify genes whose expression depends on the functions of key components of the transcription initiation machinery in yeast. Components of the RNA polymerase II holoenzyme, the general transcription factor TFIID, and the SAGA chromatin modification complex were found to have roles in expression of distinct sets of genes. The results reveal an unanticipated level of regulation which is superimposed on that due to gene-specific transcription factors, a novel mechanism for coordinate regulation of specific sets of genes when cells encounter limiting nutrients, and evidence that the ultimate targets of signal transduction pathways can be identified within the initiation apparatus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Histone methyltransferase activity of a Drosophila Polycomb group repressor complex.

              Polycomb group (PcG) proteins maintain transcriptional repression during development, likely by creating repressive chromatin states. The Extra Sex Combs (ESC) and Enhancer of Zeste [E(Z)] proteins are partners in an essential PcG complex, but its full composition and biochemical activities are not known. A SET domain in E(Z) suggests this complex might methylate histones. We purified an ESC-E(Z) complex from Drosophila embryos and found four major subunits: ESC, E(Z), NURF-55, and the PcG repressor, SU(Z)12. A recombinant complex reconstituted from these four subunits methylates lysine-27 of histone H3. Mutations in the E(Z) SET domain disrupt methyltransferase activity in vitro and HOX gene repression in vivo. These results identify E(Z) as a PcG protein with enzymatic activity and implicate histone methylation in PcG-mediated silencing.
                Bookmark

                Author and article information

                Journal
                Cell Cycle
                Cell Cycle
                KCCY
                Cell Cycle
                Taylor & Francis
                1538-4101
                1551-4005
                2016
                29 January 2016
                29 January 2016
                : 15
                : 2
                : 196-212
                Affiliations
                Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University , Utrecht, The Netherlands
                Author notes
                CONTACT Sander van den Heuvel S.J.L.vandenHeuvel@ 123456uu.nl Developmental Biology, Department of Biology, Faculty of Sciences, Utrecht University , Padualaan 8, 3584CH Utrecht, The Netherlands

                Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/kccy.

                Article
                1120925
                10.1080/15384101.2015.1120925
                4825819
                26825227
                45a1becd-fb78-4654-a3be-f238c2b98e5a
                © 2016 The Author(s). Published with license by Taylor & Francis Group, LLC

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 10 August 2015
                : 4 October 2015
                : 12 November 2015
                Page count
                Figures: 5, Tables: 0, References: 145, Pages: 17
                Categories
                Review

                Cell biology
                cell cycle,chromatin remodeling,differentiation,proliferation,swi/snf
                Cell biology
                cell cycle, chromatin remodeling, differentiation, proliferation, swi/snf

                Comments

                Comment on this article